

NVIDIA Grace for Cloud, AI and HPC Infrastructure

Grace CPU Superchip CPU Computing

CPU-based applications where absolute performance, energy efficiency, and data center density matter, such as scientific computing, data analytics, enterprise and hyperscale computing applications

Grace Hopper Superchip Large Scale AI & HPC

Accelerated applications where CPU performance and system memory bandwidth are critical; extreme and highly atomic collaboration between CPU & GPU contexts for flagship AI & HPC

NEW ANNOUNCEMENTS NEXT WEEK

NVIDIA Keynote at COMPUTEX 2023

Monday, May 29, 2023 at 11:00 a.m. Taipei Time Sunday, May 28, 2023 at 8:00 p.m. Pacific Time

Join NVIDIA founder and CEO Jensen Huang at COMPUTEX 2023 for a special keynote address streaming online.

Save the Date

NVIDIA Grace CPU

Building Block of the Superchip

High Performance Power Efficient Cores

72 flagship Arm Neoverse V2 Cores with SVE2 4x128b SIMD per core

Fast On-Chip Fabric

3.2 TB/s of bisection bandwidth connects CPU cores, NVLink-C2C, memory, and system IO

High-Bandwidth Low-Power Memory

Up to 480 GB of data center enhanced LPDDR5X Memory that delivers up to 500 GB/s of memory bandwidth

Coherent Chip-to-Chip Connections

NVLink-C2C with 900 GB/s bandwidth for coherent connection to CPU or GPU

Industry Leading Performance Per Watt

Up to 2X perf / W over today's leading servers

NVIDIA Grace core

Neoverse V2

- Arm Neoverse V2 core Arm v9.0
- AARCH64 at all ELs
- v9.0 scalable vector extensions
 - Scalable Vector Extension 2 (SVE2) 4 x 128b
 - Scalable Vector AES (SVE_AES)
 - Scalable Vector PMULL (SVE_PMULL)
 - Scalable Vector SHA3 (SVE_SHA3)
 - Scalable Vector Pit Permutes (SVE_BitPerm)
- V9.0 debug
 - Embedded Trace Extension (ETE)
 - Trace Buffer Extension (TBE)

NVIDIA Grace is a Compute and Data Movement Architecture

NVIDIA Scalable Coherency Fabric and Distributed Cache Design

- 72 high performance Arm Neoverse V2 cores with 4x128b SVE2
- 3.2 TB/s bisection bandwidth
- 117MB of L3 cache
- Local caching of remote die memory
- Background data movement via Cache
 Switch Network

Low-Power High-Bandwidth Memory Subsystem

LPDDR5X Data Center Enhanced Memory

- Optimal balance between bandwidth, energy efficiency and capacity
- Up to 1TB/s of raw bidirectional BW
- 1/8th power per GB/s vs conventional DDR memory
- Similar cost / bit to conventional DDR memory
- Data Center class memory with error code correction (ECC)

Nvidia Grace CPU Delivers 2X Data Center Throughput at the Same Power

Breakthrough Performance and Efficiency

Grace Software Ecosystem is Built on Standards

Grace brings the full NVIDIA software stack to Arm.

Portable, Optimized, Accelerated Executable

NVIDIA Platform

State-of-the-art language standards (stdpar, etc.)

Optimized Executable

Optimized OSS or Vendor Software (Armv9)

General compute commercial success (cloud, HPC, edge...)

Portable Executable

Arm Software Ecosystem (Armv8 SBSA)

The most common CPU architecture on planet Earth

Performance

NVLINK-C2C

High Speed Chip to Chip Interconnect

- Creates Grace Hopper and Grace Superchips
- Removes the typical cross-socket bottlenecks
- Up to 900GB/s of raw bidirectional BW
 - Same BW as GPU to GPU NVLINK on Hopper
- Low power interface 1.3 pJ/bit
 - More than 5x more power efficient than PCIe
- Enables coherency for both Grace and Grace
 Hopper superchips

GRACE HOPPER SUPERCHIP

The breakthrough accelerated CPU for Large-Scale AI and HPC applications

Grace CPU + H100 GPU

72 Arm Neoverse V2 Cores with SVE2 4x128b Transformer Engine and ~4PFLOPS of FP8

Fast NVLink-C2C Connection

900GB/s bi-directional bandwidth CPU to GPU 7X faster than PCIe Gen 5

~600GB of Fast Access Memory

Up to 96GB HBM3, 4TB/s bandwidth Up to 480GB LPDDR5X, 512GB/s bandwidth

Full NVIDIA Compute Stack

HPC, AI, Omniverse

High Bandwidth Memory Access & Automatic Data Migration

Bandwidth for GPU stream triad kernel accessing GPU memory

Bandwidth for CPU stream accessing CPU memory

High Bandwidth Memory Access & Automatic Data Migration

Bandwidth for GPU stream kernel accessing CPU memory

These models work best with a hardware supported shared address space

RAMMING THE NVIDIA PLATFORM

Unmatched Developer Flexibility

On Prem

Edge

In the Public Cloud

Parallelism in Standard Languages

Directives For Existing Apps

Peak Performance

C++ | Fortran | Python

Acceleration Libraries

(AI, Data Analytics, Algebra, Quantum, Communication)

ADVANTAGES OF THE GRACE HOPPER MEMORY MODEL

Full CUDA support with additional Grace memory extensions

Grace Hopper HPC Platform

Unified Memory and Cache Coherence for next gen HPC performance

Fast Access Memory 600GB

Memory Bandwidth 4TB/s

Application on Accelerated Systems

Partially GPU Accelerated

As GPUs become faster applications become increasingly limited by non-GPU factors

e.g. mostly data transfer (PCIe) limited

mostly CPU limited

OpenFoam

Partially GPU Accelerated - mostly CPU limited

- Computational fluid dynamics (CFD) toolbox developed by OpenCFD
 - Popular in automotive and other engineering sectors
 - Highly configurable fluid flow solvers with turbulence / heat transfer / etc.
 - Leverage GPU accelerated AMGX linear solvers
- HPC motorbike problem (Large)
 - Around 30% of CPU-only execution is spent in linear solves
- Performance on Grace Hopper
 - High CPU and GPU memory bandwidth improve compute performance
 - C2C bandwidth minimises the cost of migrating CPU matrix data

~35M cells benchmark designed by OpenFOAM HPC technical committee

OpenFoam

Nsight Systems Profile

Further Resources for Grace CPU and Grace Hopper

Grace CPU Superchip

- Grace CPU Superchip Architecture Whitepaper
- Grace CPU Architecture In-Depth Blog
- Grace CPU Superchip Data Sheet
- Grace CPU Energy Efficiency Blog
- A Demonstration of Al and HPC Applications for NVIDIA Grace CPU [S51880]

Grace Hopper Superchip

- Grace Hopper Superchip Architecture Whitepaper
- Grace Hopper Architecture In-Depth Blog
- Grace Hopper Superchip Architecture Data Sheet
- Grace Hopper Recommender System Blog
- Programming Model and Applications for the Grace Hopper Superchip [S51120]

