
HUAWEI | MUNICH RESEARCH CENTER

1

HUAWEI | MUNICH RESEARCH CENTER

HUAWEI TECHNOLOGIES DÜSSELDORF GmbH

Performance Evaluation of the Ginkgo

Sparse Linear Solver Framework on Arm

May. 25th, 2023 – AHUG workshop at ISC conference, Hamburg, Germany

Luka STANISIC, Robert MIJAKOVIC, Matthias GRIES

HUAWEI | MUNICH RESEARCH CENTER

2

Scope

Huawei’s investment in HPC

• Many products: storage (main focus of ISC 2023 booth E518), cloud, traditional HPC servers, AI accelerators, software, etc.

• Our team concentrates on Arm software ecosystem enablement for HPC & AI (Munich research center, funded by HiSilicon)

• Recognized current and future importance of sparse linear algebra for performance of top HPC applications

Ginkgo sparse linear solver framework (https://ginkgo-project.github.io/)

• Offering set of iterative solvers and preconditioners under BSD 3-clause permissive open-source license

• Comes with built-in benchmarks for spmv, matrix conversion and solver / preconditioner

• Recent, fresh approach, started in 2017 – already integrated with MFEM, deal.II, xSDK

• Main developers and maintainers located in Germany at Karlsruhe Institute of Technology (KIT)

• Most programming efforts spent on kernels for Nvidia, AMD and Intel accelerators

• Very competitive performance

Focus of the current research project

• Improving the OpenMP CPU execution target for Huawei Kunpeng 920 AArch64 chipset

• Relying on GNU GCC compilation

• First step: performance characterization of Ginkgo sparse linear solver on Arm & x86

https://ginkgo-project.github.io/

HUAWEI | MUNICH RESEARCH CENTER

3

Experimental Setup

Evaluated several thousand unique experimental setups

• Ginkgo options: 3 benchmarks (spmv, conversions, solver), 9 preconditioners (jacobi, paric, parict, parilu, parilut, paric-isai,

parict-isai, parilu-isai, parilut-isai, or none), 5 sparse matrix formats (csr, coo, ell, hybrid, sellp), etc.

• Huawei Kunpeng 920 system options: GCC compilers (versions 10, 11, 12), OpenMP threads scaling (24, 48, 96), etc.

• Additional investigations (in backup slides): active Working Set Size (WSS), memory frequency scaling (1600/2133/2933 MHz),

hardware prefetching (on/off), benchmark precision, I/O, C++ overhead, etc.

Evaluation with 10 real-world examples from SuiteSparse collection

• Ranked and selected matrices by studying ~200 sources (publications,

whitepapers, products, frameworks) from industry and academia

Machines

• 96-cores 2x Huawei Kunpeng 920-4826 (launched in January 2019)

− 128-cores version of Kunpeng 920 accessible via OEHI

• 64-cores Amazon Graviton 3 on AWS EC2 Ireland (remote access)

• 48-cores 2x Intel 3rd gen Xeon Scalable Processors Gold 6342 (IceLake)

• 48-cores 2x AMD 3rd gen EPYC 7413 (Milan)

Name Group Rows Cols Non-zeros Sparsity Kind Date Ref. count

thermal2 Schmid 1,228,045 1,228,045 8,580,313 0.0006% Thermal Problem 2006 9

Serena Janna 1,391,349 1,391,349 64,131,971 0.0033%

Structural

Problem 2011 9

bone010 Oberwolfach 986,703 986,703 47,851,783 0.0049%

Model Reduction

Problem 2006 7

atmosmodd Bourchtein 1,270,432 1,270,432 8,814,880 0.0005%

Computational

Fluid Dynamics 2009 5

offshore Um 259,789 259,789 4,242,673 0.0063%

Electromagnetics

Problem 2010 5

G3_circuit AMD 1,585,478 1,585,478 7,660,826 0.0003% Circuit Simulation Problem2006 5

consph Williams 83,334 83,334 6,010,480 0.0865% 2D/3D Problem 2008 5

pdb1HYS Williams 36,417 36,417 4,344,765 0.3276%

Weighted

Undirected

Graph 2008 5

Hardesty3 Hardesty 8,217,820 7,591,564 40,451,632 0.0001%

Computer

Graphics/Vision 2015 0

analytics Precima 303,813 303,813 2,006,126 0.0022%

Data Analytics

Problem 2018 0

Selected use cases from SuiteSparse matrix collection

http://sparse.tamu.edu/

http://sparse.tamu.edu/

HUAWEI | MUNICH RESEARCH CENTER

4

Overview

• Ginkgo performance analysis

− Roofline

− Instruction mix and top-down

− Hot kernels

− OpenMP imbalance

− Scalability

− Overall performance

• Concluding Remarks

− Pitfalls and next steps

HUAWEI | MUNICH RESEARCH CENTER

5

Roofline Analysis

• Best preconditioner + solver combination per

matrix applied, at double-precision

• In memory-bound region of the roof, with large

dynamic range for arithmetic intensity

• Significant distance to the roof due to control

flow, partial cacheline use, non-consecutive

memory accesses, lack of SIMD use, etc.

• FLOPS efficiency thus below 1% (similar to,

e.g., HPCG)

• Behavior depending on number of non-zeros

(NNZ) and sparsity patterns of matrices

Matrices

Intel Xeon 3rd gen SP IceLake

Huawei Kunpeng 920

HUAWEI | MUNICH RESEARCH CENTER

6

Instruction Mix and Top-down Analysis

Statistics for complete preconditioner + solver runs on

Kunpeng 920 summarized for all matrices

• Low fraction of floating point and SIMD instructions

• High amount of integer operations

• Mainly limited by memory backend (LLC and main memory)

• Limitation by LLC or main memory strongly depends on matrix

Additional experiments across Arm & x86 machines confirmed

minimal performance impact of advanced SIMD support

coming from GCC 12 auto-vectorization

To be further analyzed and tuned

Sub-category AVERAGE MIN MAX

 Memory (%) 21.84 16.72 24.99

 Integer (%) 48.38 45.25 53.27

 Floating Point (%) 2.65 0.42 4.33

 Advanced SIMD (%) 1.27 0.04 6.06

 Not Retired (%) 2.22 0.36 4.75

 Retiring (%) 30.83 16.46 49.60

 Backend Bound (%) 62.98 39.48 79.62

 -> Memory Bound (%) 40.46 15.66 62.05

 --> L1 Bound (%) 6.55 3.13 10.10

 --> L2 Bound (%) 0.72 0.16 1.56

 --> L3 or DRAM Bound (%) 33.13 9.68 54.94

 --> Store Bound (%) 0.06 0.02 0.15

 -> Core Bound (%) 22.51 17.57 27.41

 Frontend Bound (%) 5.41 2.50 9.32

 Bad Speculation (%) 0.79 0.09 1.99

 Average DRAM Bandwidth (GB/s) 34.08 2.76 68.54

 -> Read (GB/s) 28.82 2.32 65.03

 -> Write (GB/s) 5.27 0.44 13.05

 L3 By-Pass ratio (%) 8.39 0.83 22.19

 L3 miss ratio (%) 62.13 24.29 82.98

 L3 Utilization Efficiency (%) 79.51 36.37 96.85

 Within Socket Bandwidth (GB/s) 1.07 0.25 3.35

 Inter Socket Bandwidth (GB/s) 1.79 0.33 5.73

Instruction

Mix

Top-down

Memory

subsystem

HUAWEI | MUNICH RESEARCH CENTER

7

Hot Compute Kernels on Kunpeng 920

Example: spmv kernel for csr format

• Iterating over rows

• Non-consecutive column

accesses

• Multiply-add operation

Limitations

• Cannot take advantage of SIMD for multiply-add

• Memory bound because of non-consecutive accesses

Further hotspots identified

• Column reduction operations

• Jacobi preconditioner

• ParILU (Parallel Incomplete LU) preconditioner

spmv & reductions

jacobi

parilu

HUAWEI | MUNICH RESEARCH CENTER

8

OpenMP Imbalance Examples: Kunpeng 920, Preconditioner + Solver

• Considerable parallel time, but with noticeable imbalance between 96 OpenMP threads

• High serial time, but low imbalance in parallel regions

• Preconditioner dominating, high imbalance (kernels de facto sequential)

To be further analyzed and tuned

Matrix Total execution (s) Serial time (s) Serial time (%) Parallel time (s) Parallel time (%) Imbalance (s) Imbalance (%)

consph 23.32 3.26 13.97% 20.06 86.03% 16.80 83.76%

Top parallel region Elapsed time (s) Perc. of total (%) Perc. of parallel (%) Average (ms) Count Imbalance (s) Imbalance (%)

upper_trs_kernels.cpp:101 9.58 41.07% 47.74% 28.93 331 9.45 98.73%

lower_trs_kernels.cpp:101 6.36 27.27% 31.70% 19.21 331 6.28 98.85%

Matrix Total execution (s) Serial time (s) Serial time (%) Parallel time (s) Parallel time (%) Imbalance (s) Imbalance (%)

Serena 42.54 26.10 61.35% 16.44 38.65% 1.64 9.99%

Top parallel region Elapsed time (s) Perc. of total (%) Perc. of parallel (%) Average (ms) Count Imbalance (s) Imbalance (%)

sellp_kernels.cpp:67 9.63 22.65% 58.60% 5.65 1706 0.8117 8.43%

jacobi_kernels.cpp:564 4.09 9.61% 24.87% 2.39 1709 0.3982 9.74%

kernel_launch_reduction.hpp:335 0.62 1.47% 3.80% 0.18 3415 0.0856 13.71%

Matrix Total execution (s) Serial time (s) Serial time (%) Parallel time (s) Parallel time (%) Imbalance (s) Imbalance (%)

bone010 27.98 6.32 22.61% 21.65 77.39% 9.08 41.96%

Top parallel region Elapsed time (s) Perc. of total (%) Perc. of parallel (%) Average (ms) Count Imbalance (s) Imbalance (%)

csr_kernels.cpp:84 8.35 29.86% 38.58% 0.82 10200 1.90 22.78%

kernel_launch_reduction.hpp:335 2.42 8.66% 11.19% 0.12 20403 1.34 55.13%

kernel_launch.hpp:83 2.27 8.11% 10.48% 0.22 10200 0.66 29.18%

kernel_launch_reduction.hpp:353 1.64 5.85% 7.56% 0.08 20403 1.33 81.45%

HUAWEI | MUNICH RESEARCH CENTER

9

Intel Xeon SP3 IceLake

Scalability

• Solver benchmark

• Log vertical axis

• Results again very

dependent on matrix

• Kunpeng 920 has 96

cores and often

cannot take

advantage of

complete node

• Mediocre scaling on

other machines (48

and 64 cores)

• No benefits from

hyperthreading Kunpeng 920

HUAWEI | MUNICH RESEARCH CENTER

10

Overall Performance
Geometric mean across matrices, default config ranking:

1. 64-cores Amazon Graviton 3 on AWS EC2 - 2022

2. 48-cores 2x Intel Xeon SP3 Gold 6342 (IceLake) - 2021

3. 48-cores 2x AMD 3rd gen EPYC 7413 (Milan) - 2021

4. 96-cores 2x Huawei Kunpeng 920-4826 - 2019

Preconditioner + solver selection

• Simple Jacobi preconditioner often the best, followed by

not using a preconditioner at all

• Selected cases where one of the parallel incomplete

Cholesky/LU variants allows much faster convergence

• Conjugate Gradient (CG) solver algorithm often the best

Preconditioner + solver performance per matrix

• Graviton 3 mostly performs the best (7 out of 9 matrices)

• Performance on AMD Milan greatly depends on matrix

Precond. Solver Precond. Solver Precond. Solver Precond. Solver

thermal2 none cg none cg none cg jacobi cg

G3_circuit paric-isai cg paric-isai cg paric-isai cg paric-isai cg

bone010 none cg none cg none cg none cg

atmosmodd none bicgstab none bicgstab none bicgstab none bicgstab

offshore jacobi cgs parilu-isai cgs parilu-isai cgs jacobi cgs

pdb1HYS jacobi cg jacobi cg jacobi cg jacobi cg

consph parilu cb_gmres_reduce1jacobi cg jacobi cgs jacobi cg

Serena jacobi cg jacobi cg jacobi cg jacobi cg

analytics parilu fcg parilu gmres parilu cg parilu cb_gmres_reduce1

AMD Milan

Matrix

Kunpeng 920 Amazon Graviton 3 Intel IceLake

HUAWEI | MUNICH RESEARCH CENTER

11

Overview

• Ginkgo performance analysis

− Roofline

− Instruction mix and top-down

− Hot kernels

− OpenMP imbalance

− Scalability

− Overall performance

• Concluding Remarks

− Pitfalls and next steps

HUAWEI | MUNICH RESEARCH CENTER

12

Concluding Remarks

Pitfalls

• Variability of repeated runs with the same settings can be significant

− Mixture of OpenMP overhead, NUMA effects, startup calibrations by Ginkgo for selecting matrix format,

nondeterministic preconditioner algorithms, responsiveness of memory subsystem under load

• Extra investigation of OpenMP parallelism

− On Kunpeng 920, when a subset of cores is used: the best choice between “spread” and “close” mappings is matrix

dependent, and can have a significant impact on the overall performance

− Using dynamic and guided OpenMP scheduling strategies decreases performance, especially for smaller chunks

Next steps

• Performance analysis of direct sparse linear solvers (e.g., MUMPS framework)

• Ginkgo contributions related to micro-architecture level optimization (e.g., SVE) for selected algorithms

Copyright©2023 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive

statements including, without limitation, statements regarding

the future financial and operating results, future product

portfolio, new technology, etc. There are a number of factors that

could cause actual results and developments to differ materially

from those expressed or implied in the predictive statements.

Therefore, such information is provided for reference purpose

only and constitutes neither an offer nor an acceptance. Huawei

may change the information at any time without notice.

Bring digital to every person, home and
organization for a fully connected,
intelligent world.

Thank you.

HUAWEI | MUNICH RESEARCH CENTER

14

References and Setups

References
• H. Anzt, T. Cojean, G. Flegar et al.: Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing, ACM Transactions on Mathematical Software,

volume 48(1), 2022

https://ginkgo-project.github.io/

• T.A. Davis, Yifan Hu: The university of Florida sparse matrix collection, ACM Transactions on Mathematical Software, Volume 38(1), 2011

SuiteSparse matrix collection: http://sparse.tamu.edu/

• Jing Xia, Chuanning Cheng, Xiping Zhou et al.: Kunpeng 920: The First 7-nm Chiplet-Based 64-Core ARM SoC for Cloud Services, IEEE Micro, volume 41(5), 2021

• Brendan Gregg, How To Measure the Working Set Size on Linux, https://www.brendangregg.com/blog/2018-01-17/measure-working-set-size.html (accessed May 2023)

Machine setups
• 2x Kunpeng 920-4826 (48 cores) at 2.6 GHz, 48 MB LLC, 128 bit NEON vectorization support (one FMA unit enabled for double precision, two FMA units enabled for single

precision), 16 x 32 GB DDR4-2933 memory DIMMs (single DIMM per channel), Ubuntu 18.04.6 LTS (Linux 5.4.0-136-generic aarch64)

• 2x AMD EPYC 7413 (24 cores) at 2.65 GHz base frequency, 128 MB LLC, AVX2 vectorization support (two FMA units), 16 x 16 GB DDR4-3200 memory DIMMs (single DIMM

per channel), Ubuntu 18.04.6 LTS (Linux 5.4.0-90-generic x86_64)

• 2x Intel Xeon SP3 Gold 6342 (24 cores) at 2.8 GHz base frequency, 36 MB LLC, AVX512 vectorization support (two FMA units), 16 x 16 GB DDR4-3200 memory DIMMs

(single DIMM per channel), Ubuntu 18.04.6 LTS (Linux 5.15.31-051531-generic x86_64)

• AWS EC2 c7g.16xlarge instance: 1x Amazon Graviton 3 (64 cores) at likely 2.6 GHz, likely 64 MB LLC, SVE vectorization support (two FMA units enabled for SVE256, 4 FMA

units enabled for NEON), likely 8 channels at DDR5-4800 (128 GB total), Ubuntu 22.04.1 LTS (Linux 5.15.0-1027-aws aarch64)

https://ginkgo-project.github.io/
http://sparse.tamu.edu/
https://www.brendangregg.com/blog/2018-01-17/measure-working-set-size.html

HUAWEI | MUNICH RESEARCH CENTER

15

Active Working Set Size (WSS)

• WSS depends on matrix characteristics

• 3 matrices need several GBs (served from main memory)

• 3 matrices take up to 0.5 GB

• 4 matrices take up to 0.25 GB and can leverage the LLC

• After initialization, WSS cumulative traces of spmv benchmark

show 5 distinct phases for 5 evaluated matrix formats

• Corresponding WSS snapshot traces show peak memory

requirements at the beginning of each phase

Working set size [MB] spmv conversion
Best preconditioner +

solver

thermal2 380.4 451.3 202.2

G3_circuit 359.6 398.1 279.7

bone010 2251.6 3143.4 3034.7

atmosmodd 354.2 415.4 291.5

offshore 198.5 244.0 237.5

pdb1HYS 188.5 249.8 117.4

consph 239.5 283.6 238.9

Serena 5839.3 5965.3 2637.1

Hardesty3 1717.1 1881.9 --

analytics 179.2 89348.9 88.1

HUAWEI | MUNICH RESEARCH CENTER

16

Memory Bandwidth Characteristics

Top-down analysis showed that Ginkgo solver execution is

backend bounded mainly by memory

Hardware prefetcher (example: spmv benchmark)

• Intel IceLake’s prefetchers show the highest impact, reducing

performance up to 38% by switching them off

• Followed by Kunpeng 920 (23%) and AMD Milan (13%)

Impact of DRAM DIMM speed (example: spmv benchmark)

• On Kunpeng 920, performance drops by up to 24%

(mem frequency reduced by 45%, DDR4-2933 → 1600)

• On AMD & Intel, performance goes down by 3% and 7%

(mem frequency reduced by 17%, DDR4-3200 → 2666)

• Overall, proportional dependency on memory bandwidth

(performance partially limited by memory latency as well)

Kunpeng 920 Intel Xeon SP3 IceLake

Normalized performance (higher is better)

Kunpeng 920 Intel Xeon SP3 IceLake

HUAWEI | MUNICH RESEARCH CENTER

17

Additional Investigations

• In most cases lower precision single kernels are faster than double, and

scomplex kernels faster than dcomplex

• For atmosmodd and pdb1HYS matrices higher precision is faster than lower

due to faster convergence

• Darshan traces confirmed that Ginkgo executions have almost no I/O footprint

(except initial reading of the matrix), similar to other sparse linear solvers

• Measured negligible overhead of C++ runtime polymorphism

Kunpeng 920

