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 Japanese company with offices in Tokai, Tokyo and Kobe
 Involved in many aspects of High Performance Computer Initiative (HPCI)

https://www.hpci-office.jp
● Promotion
● Project selection and resource allocation (everyone can apply!)
● Single point of contact helpdesk: helpdesk@hpci-office.jp

● First level support
● Application installation and support
● Advanced support (porting, tuning)

● Co-host the Joint Seminars on Advanced use of Supercomputer Fugaku and Arm computer 
systems
● https://www.hpci-office.jp/en/events/seminars
● July 17th: Virtual Fugaku

 

RIST – Research Organization for Information Science and Technology

https://www.hpci-office.jp/en/events/seminars
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 Molecular dynamics application
 

 Very popular
 highest number of HPCI projects
 Heavily used during the COVID’19 effort (team lead by Professor Okuno, Kyoto University)

 
 Run on many platforms (Linux/Windows, CPU/GPU) and is heavily optimized

GROMACS

GROMACS has to be ported and optimized on Fugaku/A64fx
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Vector Length matters (non bonded kernels)

 GROMACS was initially available on Arm-NEON (128 bits vectors)

 GROMACS was built on x86_64 platforms with all available architecture
 No vectorization (e.g. the compiler will do everything) is highly suboptimal
 Longest vectors means longest performances
 Performance is improved by using the latest (and feature rich) ISA

 Naive expectation on A64fx (SVE 512 bits) is ~3x improvement vs the existing NEON architecture
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 Modern C++ application

 Abstract vector registers
 Vector operations are implemented by (inline) SIMD intrinsics
 Operators are overloaded
 Vector length is known at build time

 One implementation per architecture

x86_64 SSE

x86_64 AVX

x86_64 AVX512

Sparc HPC ACE

ARM NEON

ARM SVE had yet to be implemented

 Non bonded kernels single thread performance was identified as the primary target

Generally a hot spot in GROMACS simulations

Heavily rely on architecture specific implementation (e.g. SIMD intrinsics)

Most leverage

GROMACS (from a software point of view)
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In a nutshell (ARM NEON)

#include <arm_neon.h>

class SimdFloat
{
    public:
        SimdFloat() {}

        float32x4_t  simdInternal_;
};
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In a nutshell (ARM NEON)

#include <arm_neon.h>

class SimdFloat
{
    public:
        SimdFloat() {}

        float32x4_t  simdInternal_;
};

static inline SimdFloat
operator+(SimdFloat a, SimdFloat b)
{
    return {
               vaddq_f32(a.simdInternal_, b.simdInternal_)
    };
}
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In a nutshell (ARM NEON)

#include <arm_neon.h>

class SimdFloat
{
    public:
        SimdFloat() {}

        float32x4_t  simdInternal_;
};

static inline SimdFloat
operator+(SimdFloat a, SimdFloat b)
{
    return {
               vaddq_f32(a.simdInternal_, b.simdInternal_)
    };
}

static void dummy() {
    SimdFloat a, b, c;
    a = b + c;
}
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 Porting started around ISC’19
 Kickoff meeting with Professor Lindahl and team

 No SVE support in GROMACS at that time (only 128bits NEON vectors were supported)
 Very limited hardware and software environment

 No processor yet (Fugaku was known as post-K)
 Only ARM compilers were feature complete (ACLE intrinsics)
 Compiler was VLA only
 ArmIE (correctness) and gem5 (simulator)

 Main focus is the non bonded kernels
 Heavily use vector abstraction framework
 Ideally no changes are required

Once upon a time...
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 SVE ISA enables writing Vector Length Agnostic (VLA) code
● Same binary can run on any ARM+SVE processor
● Use of masked instructions enable the code to be vectorized and to run efficiently on 

multiple architectures
 GROMACS is Vector Length Specific (VLS)

 Vector lengths are hard coded
 Some decisions are made at compile time
 GROMACS supports selected vector lengths (2, 4, 8 or 16 elements per vector)
 VLA code is at best on par with VLS code
 VLA GROMACS would need involvement from the core developers
 Only libgromacs.so uses SIMD instructions, binaries (e.g. gmx) do not

 Opted for Vector Length Specific GROMACS

VLA or VLS ?
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Initial implementation (ARM compilers)

class SimdFloat
{
    public:
        SimdFloat() {}

        float32x4_t  simdInternal_;
};

class SimdFloat
{
    public:
        SimdFloat() {}

        svfloat32_t simdInternal_;
};

NEON SVE
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Initial implementation (ARM compilers)

class SimdFloat
{
    public:
        SimdFloat() {}

        float32x4_t  simdInternal_;
};

class SimdFloat
{
    public:
        SimdFloat() {}

        svfloat32_t simdInternal_;
};

NEON SVE

typedef __sizeless_struct SimdFloat {
    SimdFloat() {}
    
    svfloat32_t simdInternal_;

} SimdFloat;
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Initial implementation (ARM compilers)

class SimdFloat
{
    public:
        SimdFloat() {}

        float32x4_t  simdInternal_;
};

class SimdFloat
{
    public:
        SimdFloat() {}

        svfloat32_t simdInternal_;
};

NEON SVE

typedef __sizeless_struct SimdFloat {
    SimdFloat() {}
    
    svfloat32_t simdInternal_;

} SimdFloat;

ACLE

SimdFloat vec[3];

NEON

SimdFloat vec[3];
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 ArmIE (SVE emulation) was extremely helpful
 Initial port was developed on ThunderX2 (NEON only)
 Builtin make simd-test was leveraged to validate the correctness of the port
 Correctness only (e.g. no performance indication)

 SVE ISA (virtually all instructions take a mask) is a very good fit for GROMACS
 Gem5 simulator was used to start optimizing

 BenchMEM benchmark (one iteration tooks a few ms on native hardware)
 Takes > 7 hours on the simulator (virtually unusable)
 Manually trim down to one function invokation and reduce the simulation down to 40 

minutes
 Interesting tool to validate different implementations

 No OS noise, so very easy to figure out what works and what does not

Initial port
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 A working port was pretty straightforward
 Several attempts were made to optimize GROMACS on A64fx
 Try different GROMACS optimizations

 Some can be hard to upstream (too much arch specific)
 Outcome depends on both compiler and compile flags

 Try different compilers (ARM, Fujitsu, LLVM and GNU)
 ACLE SIMD intrinsics was initially only supported by ARM compilers
 Several bugs (quickly solved though) (GNU: 7, LLVM: 6, vendors: a few)
 Performance wise YMMV

 LLVM 12 (awful) vs LLVM 14 (great)
 GNU compilers are good and stable
 ARM compilers are now the best (and they are free now!)

A long and bumpy road
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 NEON and 128 bits SVE are on par
 512 bits SVE performance improvement was disappointing
 With a real world dataset (one node, 48 OpenMP threads)

 NEON vectorization :  13.9 ns/day
 SVE vectorization : 16.6 ns/day
 SVE vectorization + GROMACS optimizations : 18.0 ns/day

Initial performance evaluation
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 GROMACS (non bonded kernels) 
performances were not very competitive on 
A64fx
 Not an ARM vs x86_64 issue (M1 is pretty 

good)
 Need to understand what is limiting 

performances

Single thread performance comparison
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Nonbonded kernels performance on A64fx

SIMD 
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 Some very good metrics
 High SIMD rate
 SVE only
 No cache miss

 But
 Low Instruction per Cycle (IPC): ~1 (ideally ~4)
 More than half the cycles are spent waiting on the Floating Point Unit (FPU)

 Interpretation
 GROMACS is a complex workflow mainly consisting of a long list of instructions depending 

of each other
 The relative high instruction latency of A64fx severely limits performances
 The relative short Out-of-Order (OoO) pipeline is helpless
 Compiler does not seem to optimize “manually vectorized code” (e.g. no software 

pipelining)

Performance analysis
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A typical GROMACS benchmark (PP + PME)

 Overall performance (with optimized FFT) is pretty similar between various compilers
● Optimized FFTW and upstreamed it https://github.com/FFTW/fftw3/pull/315

 A close look shown some room for improvement
 ARM compilers are better for the non bonded kernels
 GNU compilers are better for the PME kernels (including FFTW)
 FJ compilers are not that bad and do not require any additional runtime dependencies

 Building an hybrid GROMACS allowed to squeeze some extra performances

https://github.com/FFTW/fftw3/pull/315
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 Data is generally already in L1 cache
 Strong data dependency between instructions
 load/store is not much slower than compute => textbook software pipelining (SWP) not really 

helpful and would be hard to implement in GROMACS
 Loop unrolling does not help: short OoO pipeline does not unlock data parallelism

Revisiting the low IPC issue

for(int i=0; i<N-1; i+=2) {
   int c0 = a[i];
   c0 = c0 + 1;
   c0 = c0 + 2;
   c0 = c0 + 3;
   c0 = c0 + 4;
   a[i] = c0;
   int c1 = a[i+1];
   c1 = c1 + 1;
   c1 = c1 + 2;
   c1 = c1 + 3;
   c1 = c1 + 4;
   a[i+1] = c1;
}

for(int i=0; i<N; i++) {
   int c = a[i];            // load
   c = c + 1;              // compute
   c = c + 2;              // compute
   c = c + 3;              // compute
   c = c + 4;              // compute
   a[i] = c;                 // store
}
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 Unroll and interleave instructions in order to evidence data parallelism,
even with a short OoO pipeline

Unroll and interleave (1/2)

for(int i=0; i<N-1; i+=2) {
   int c0 = a[i];
   int c1 = a[i+1];
   c0 = c0 + 1;
   c1 = c1 + 1;
   c0 = c0 + 2;
   c1 = c1 + 2;
   c0 = c0 + 3;
   c1 = c1 + 3;
   c0 = c0 + 4;
   c1 = c1 + 4;
   a[i] = c0;
   a[i+1] = c1;
}

for(int i=0; i<N; i++) {
   int c = a[i];            // load
   c = c + 1;              // compute
   c = c + 2;              // compute
   c = c + 3;              // compute
   c = c + 4;              // compute
   a[i] = c;                 // store
}
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 Counter-intuitive since this requires more registers
● Registers spilling before
● Likely even more registers spilling

 Eventually quite effective with GROMACS on A64fx

Unroll and interleave (2/2)
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 NVIDIA Grace and Amazon Graviton 4 (based on the Arm Neoverse V2 architecture) 
support SVE with 128 bits vectors 

 Should NEON or SVE be used?
 Ongoing discussion at https://gitlab.com/gromacs/gromacs/-/merge_requests/5147
 SVE gets selected by default
 NEON is currently faster than SVE (2% on non bonded kernels)

● Currently best to force cmake -DGMX_SIMD=ARM_NEON_ASIMD)
 Not a NEON vs SVE strictly speaking
 Some discrepancies between NEON and SVE handling in GROMACS

● Fixing these makes SVE 1% faster than NEON
 Using SVE with a few subroutines still using NEON improves performances

● Making SVE 2.5% faster than NEON

Neoverse V2: SVE or NEON?

https://gitlab.com/gromacs/gromacs/-/merge_requests/5147
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 GROMACS has been successfully ported to A64fx (and the SVE extensions)
● Port was relatively straightforward
● Rich Arm software ecosystem was leveraged

 Optimization was challenging
● Very sensitive to compilers and compilers options
● GROMACS non bonded kernels are complex and CPU intensive, and hence not an ideal fit 

for the A64fx micro-architecture (short OoO pipeline and high latency instructions)
 SVE for FFTW is now upstream, will be available in FFTW 3.3.11
 Two not so common ways to improve performances:

 Mix compilers and leverage the rich Arm ecosystem
 Unroll and interleave improved the nonbonded kernels perfomances by ~50% on A64fx

Conclusions
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