
Copyright 2025 RIST

ISC 2025 Arm HPC User Group

Porting and tuning
GROMACS

 on Arm-SVE

Gilles Gouaillardet
gilles@rist.or.jp

Copyright 2025 RIST

 Japanese company with offices in Tokai, Tokyo and Kobe
 Involved in many aspects of High Performance Computer Initiative (HPCI)

https://www.hpci-office.jp
● Promotion
● Project selection and resource allocation (everyone can apply!)
● Single point of contact helpdesk: helpdesk@hpci-office.jp

● First level support
● Application installation and support
● Advanced support (porting, tuning)

● Co-host the Joint Seminars on Advanced use of Supercomputer Fugaku and Arm computer
systems
● https://www.hpci-office.jp/en/events/seminars
● July 17th: Virtual Fugaku

RIST – Research Organization for Information Science and Technology

https://www.hpci-office.jp/en/events/seminars

Copyright 2025 RIST

 Molecular dynamics application

 Very popular
 highest number of HPCI projects
 Heavily used during the COVID’19 effort (team lead by Professor Okuno, Kyoto University)

 Run on many platforms (Linux/Windows, CPU/GPU) and is heavily optimized

GROMACS

GROMACS has to be ported and optimized on Fugaku/A64fx

Copyright 2025 RIST

Vector Length matters (non bonded kernels)

 GROMACS was initially available on Arm-NEON (128 bits vectors)

 GROMACS was built on x86_64 platforms with all available architecture
 No vectorization (e.g. the compiler will do everything) is highly suboptimal
 Longest vectors means longest performances
 Performance is improved by using the latest (and feature rich) ISA

 Naive expectation on A64fx (SVE 512 bits) is ~3x improvement vs the existing NEON architecture

Copyright 2025 RIST

 Modern C++ application

 Abstract vector registers
 Vector operations are implemented by (inline) SIMD intrinsics
 Operators are overloaded
 Vector length is known at build time

 One implementation per architecture

x86_64 SSE

x86_64 AVX

x86_64 AVX512

Sparc HPC ACE

ARM NEON

ARM SVE had yet to be implemented

 Non bonded kernels single thread performance was identified as the primary target

Generally a hot spot in GROMACS simulations

Heavily rely on architecture specific implementation (e.g. SIMD intrinsics)

Most leverage

GROMACS (from a software point of view)

Copyright 2025 RIST

In a nutshell (ARM NEON)

#include <arm_neon.h>

class SimdFloat
{
 public:
 SimdFloat() {}

 float32x4_t simdInternal_;
};

Copyright 2025 RIST

In a nutshell (ARM NEON)

#include <arm_neon.h>

class SimdFloat
{
 public:
 SimdFloat() {}

 float32x4_t simdInternal_;
};

static inline SimdFloat
operator+(SimdFloat a, SimdFloat b)
{
 return {
 vaddq_f32(a.simdInternal_, b.simdInternal_)
 };
}

Copyright 2025 RIST

In a nutshell (ARM NEON)

#include <arm_neon.h>

class SimdFloat
{
 public:
 SimdFloat() {}

 float32x4_t simdInternal_;
};

static inline SimdFloat
operator+(SimdFloat a, SimdFloat b)
{
 return {
 vaddq_f32(a.simdInternal_, b.simdInternal_)
 };
}

static void dummy() {
 SimdFloat a, b, c;
 a = b + c;
}

Copyright 2025 RIST

 Porting started around ISC’19
 Kickoff meeting with Professor Lindahl and team

 No SVE support in GROMACS at that time (only 128bits NEON vectors were supported)
 Very limited hardware and software environment

 No processor yet (Fugaku was known as post-K)
 Only ARM compilers were feature complete (ACLE intrinsics)
 Compiler was VLA only
 ArmIE (correctness) and gem5 (simulator)

 Main focus is the non bonded kernels
 Heavily use vector abstraction framework
 Ideally no changes are required

Once upon a time...

Copyright 2025 RIST

 SVE ISA enables writing Vector Length Agnostic (VLA) code
● Same binary can run on any ARM+SVE processor
● Use of masked instructions enable the code to be vectorized and to run efficiently on

multiple architectures
 GROMACS is Vector Length Specific (VLS)

 Vector lengths are hard coded
 Some decisions are made at compile time
 GROMACS supports selected vector lengths (2, 4, 8 or 16 elements per vector)
 VLA code is at best on par with VLS code
 VLA GROMACS would need involvement from the core developers
 Only libgromacs.so uses SIMD instructions, binaries (e.g. gmx) do not

 Opted for Vector Length Specific GROMACS

VLA or VLS ?

Copyright 2025 RIST

Initial implementation (ARM compilers)

class SimdFloat
{
 public:
 SimdFloat() {}

 float32x4_t simdInternal_;
};

class SimdFloat
{
 public:
 SimdFloat() {}

 svfloat32_t simdInternal_;
};

NEON SVE

Copyright 2025 RIST

Initial implementation (ARM compilers)

class SimdFloat
{
 public:
 SimdFloat() {}

 float32x4_t simdInternal_;
};

class SimdFloat
{
 public:
 SimdFloat() {}

 svfloat32_t simdInternal_;
};

NEON SVE

typedef __sizeless_struct SimdFloat {
 SimdFloat() {}

 svfloat32_t simdInternal_;

} SimdFloat;

Copyright 2025 RIST

Initial implementation (ARM compilers)

class SimdFloat
{
 public:
 SimdFloat() {}

 float32x4_t simdInternal_;
};

class SimdFloat
{
 public:
 SimdFloat() {}

 svfloat32_t simdInternal_;
};

NEON SVE

typedef __sizeless_struct SimdFloat {
 SimdFloat() {}

 svfloat32_t simdInternal_;

} SimdFloat;

ACLE

SimdFloat vec[3];

NEON

SimdFloat vec[3];

Copyright 2025 RIST

 ArmIE (SVE emulation) was extremely helpful
 Initial port was developed on ThunderX2 (NEON only)
 Builtin make simd-test was leveraged to validate the correctness of the port
 Correctness only (e.g. no performance indication)

 SVE ISA (virtually all instructions take a mask) is a very good fit for GROMACS
 Gem5 simulator was used to start optimizing

 BenchMEM benchmark (one iteration tooks a few ms on native hardware)
 Takes > 7 hours on the simulator (virtually unusable)
 Manually trim down to one function invokation and reduce the simulation down to 40

minutes
 Interesting tool to validate different implementations

 No OS noise, so very easy to figure out what works and what does not

Initial port

Copyright 2025 RIST

 A working port was pretty straightforward
 Several attempts were made to optimize GROMACS on A64fx
 Try different GROMACS optimizations

 Some can be hard to upstream (too much arch specific)
 Outcome depends on both compiler and compile flags

 Try different compilers (ARM, Fujitsu, LLVM and GNU)
 ACLE SIMD intrinsics was initially only supported by ARM compilers
 Several bugs (quickly solved though) (GNU: 7, LLVM: 6, vendors: a few)
 Performance wise YMMV

 LLVM 12 (awful) vs LLVM 14 (great)
 GNU compilers are good and stable
 ARM compilers are now the best (and they are free now!)

A long and bumpy road

Copyright 2025 RIST

 NEON and 128 bits SVE are on par
 512 bits SVE performance improvement was disappointing
 With a real world dataset (one node, 48 OpenMP threads)

 NEON vectorization : 13.9 ns/day
 SVE vectorization : 16.6 ns/day
 SVE vectorization + GROMACS optimizations : 18.0 ns/day

Initial performance evaluation

Copyright 2025 RIST

 GROMACS (non bonded kernels)
performances were not very competitive on
A64fx
 Not an ARM vs x86_64 issue (M1 is pretty

good)
 Need to understand what is limiting

performances

Single thread performance comparison

Copyright 2025 RIST

Nonbonded kernels performance on A64fx

SIMD
instruction

rate (%)
(/Effective

instruction)

SVE operation
rate (%)

Floating-
point

pipeline
Active

element
rate (%)

IPC

81.93% 99.99% 91.42% 1.03

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

L1D m iss L2 m iss

Cache L1D,L2 miss rate

(/ Load-store instructions)

software prefetch rate(L1D,L2

m iss)
hardware prefetch rate (L1D,L2

m iss)
dem and rate(L1D,L2 m iss)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CMG

Statistics

SI MD instruct ion rat io(/ Effect ive

instruct ion)
Memory throughput peak rat io

Float ing-point operat ion peak

rat io

0.0E+ 00

2.0E+ 00

4.0E+ 00

6.0E+ 00

8.0E+ 00

1.0E+ 01

1.2E+ 01

1.4E+ 01

1.6E+ 01

1.8E+ 01

T
h

re
a

d
 0

Process

0

Cycle Accounting execution time(s) Other instruct ion commit

4 inst ruct ion comm it

3 inst ruct ion comm it

2 inst ruct ion comm it

1 inst ruct ion comm it

Barrier synchronizat ion wait

I nst ruct ion fetch wait

Store port busy wait

Other wait

Branch instruct ion wait

Float ing-point operat ion wait

I nteger operat ion wait

Float ing-point load L1D cache access wait (*)

Float ing-point load L2 cache access wait

I nteger load L1D cache access wait

I nteger load L2 cache access wait

Float ing-point load m em ory access wait

I nteger load memory access wait

Prefetch port busy wait by software prefetch

Prefetch port busy wait by hardware prefetch

Float ing-point busy rate execut ion t im e

I nteger busy rate execut ion t ime

L1 busy rate execut ion t ime

L2 busy rate execut ion t ime

Memory busy rate execut ion t im e

(*) I nclude wait t im e for integer L1D cache

access

Copyright 2025 RIST

 Some very good metrics
 High SIMD rate
 SVE only
 No cache miss

 But
 Low Instruction per Cycle (IPC): ~1 (ideally ~4)
 More than half the cycles are spent waiting on the Floating Point Unit (FPU)

 Interpretation
 GROMACS is a complex workflow mainly consisting of a long list of instructions depending

of each other
 The relative high instruction latency of A64fx severely limits performances
 The relative short Out-of-Order (OoO) pipeline is helpless
 Compiler does not seem to optimize “manually vectorized code” (e.g. no software

pipelining)

Performance analysis

Copyright 2025 RIST

A typical GROMACS benchmark (PP + PME)

 Overall performance (with optimized FFT) is pretty similar between various compilers
● Optimized FFTW and upstreamed it https://github.com/FFTW/fftw3/pull/315

 A close look shown some room for improvement
 ARM compilers are better for the non bonded kernels
 GNU compilers are better for the PME kernels (including FFTW)
 FJ compilers are not that bad and do not require any additional runtime dependencies

 Building an hybrid GROMACS allowed to squeeze some extra performances

https://github.com/FFTW/fftw3/pull/315

Copyright 2025 RIST

 Data is generally already in L1 cache
 Strong data dependency between instructions
 load/store is not much slower than compute => textbook software pipelining (SWP) not really

helpful and would be hard to implement in GROMACS
 Loop unrolling does not help: short OoO pipeline does not unlock data parallelism

Revisiting the low IPC issue

for(int i=0; i<N-1; i+=2) {
 int c0 = a[i];
 c0 = c0 + 1;
 c0 = c0 + 2;
 c0 = c0 + 3;
 c0 = c0 + 4;
 a[i] = c0;
 int c1 = a[i+1];
 c1 = c1 + 1;
 c1 = c1 + 2;
 c1 = c1 + 3;
 c1 = c1 + 4;
 a[i+1] = c1;
}

for(int i=0; i<N; i++) {
 int c = a[i]; // load
 c = c + 1; // compute
 c = c + 2; // compute
 c = c + 3; // compute
 c = c + 4; // compute
 a[i] = c; // store
}

Copyright 2025 RIST

 Unroll and interleave instructions in order to evidence data parallelism,
even with a short OoO pipeline

Unroll and interleave (1/2)

for(int i=0; i<N-1; i+=2) {
 int c0 = a[i];
 int c1 = a[i+1];
 c0 = c0 + 1;
 c1 = c1 + 1;
 c0 = c0 + 2;
 c1 = c1 + 2;
 c0 = c0 + 3;
 c1 = c1 + 3;
 c0 = c0 + 4;
 c1 = c1 + 4;
 a[i] = c0;
 a[i+1] = c1;
}

for(int i=0; i<N; i++) {
 int c = a[i]; // load
 c = c + 1; // compute
 c = c + 2; // compute
 c = c + 3; // compute
 c = c + 4; // compute
 a[i] = c; // store
}

Copyright 2025 RIST

 Counter-intuitive since this requires more registers
● Registers spilling before
● Likely even more registers spilling

 Eventually quite effective with GROMACS on A64fx

Unroll and interleave (2/2)

Copyright 2025 RIST

 NVIDIA Grace and Amazon Graviton 4 (based on the Arm Neoverse V2 architecture)
support SVE with 128 bits vectors

 Should NEON or SVE be used?
 Ongoing discussion at https://gitlab.com/gromacs/gromacs/-/merge_requests/5147
 SVE gets selected by default
 NEON is currently faster than SVE (2% on non bonded kernels)

● Currently best to force cmake -DGMX_SIMD=ARM_NEON_ASIMD)
 Not a NEON vs SVE strictly speaking
 Some discrepancies between NEON and SVE handling in GROMACS

● Fixing these makes SVE 1% faster than NEON
 Using SVE with a few subroutines still using NEON improves performances

● Making SVE 2.5% faster than NEON

Neoverse V2: SVE or NEON?

https://gitlab.com/gromacs/gromacs/-/merge_requests/5147

Copyright 2025 RIST

 GROMACS has been successfully ported to A64fx (and the SVE extensions)
● Port was relatively straightforward
● Rich Arm software ecosystem was leveraged

 Optimization was challenging
● Very sensitive to compilers and compilers options
● GROMACS non bonded kernels are complex and CPU intensive, and hence not an ideal fit

for the A64fx micro-architecture (short OoO pipeline and high latency instructions)
 SVE for FFTW is now upstream, will be available in FFTW 3.3.11
 Two not so common ways to improve performances:

 Mix compilers and leverage the rich Arm ecosystem
 Unroll and interleave improved the nonbonded kernels perfomances by ~50% on A64fx

Conclusions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

