MareNostrum5's Graceful Landing

AHUG25, Hamburg

Presented by: Majesa Trimmel & Fabio Banchelli (BSC)

David Vicente (BSC) Marta Garcia-Gasulla (BSC) Filippo Mantovani (BSC)

Special thanks to: Filippo Spiga (NVIDIA)

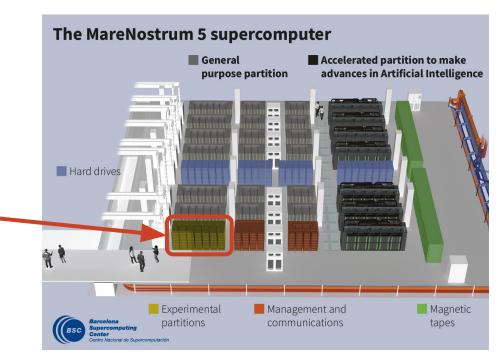
Barcelona Supercomputing Center Centro Nacional de Supercomputación

Introduction

Previous experience with Arm-based clusters

- Mont-Blanc EU Project
 - Odroid-XU
 - NVIDIA Jetson-TX
 - Cavium ThunderX
 - Marvell ThunderX2
- BSC-Huawei collaboration
 - Kunpeng
- MareNostrum4 Clusters of Emerging Technology
 - Fugaku

- Student cluster competition
 - Ampere Altra MAX ISC23
 - Grace-Grace ISC24
 - AmpereOne + H100 ISC25


Cluster of emerging technology: evaluation of a production HPC system based on A64FX

MareNostrum5

Structure

- General Purpose Partition
 - Intel CPUs
- Accelerated Partition
 - Intel CPUs + NVIDIA GPUs
- Next Generation General Purpose Partition (Grace Partition)
 NVIDIA Grace CPUs
- Next Generation Accelerated Partition
 - NVIDIA Grace CPUs + NVIDIA
 Hopper GPUs

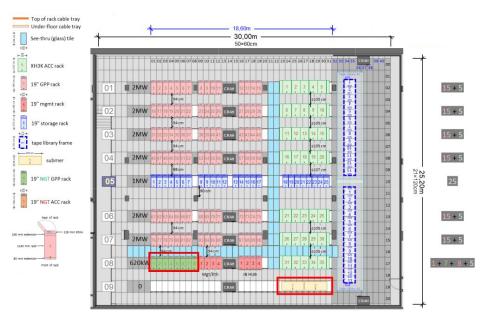
Early evaluation cluster and MareNostrum5 comparison

- Early evaluation cluster with NVIDIA engineering samples
- Two hardware configurations
 - Grace-Grace (3 nodes)
 - Grace-Hopper (2 nodes)
- Master's Thesis
 - Cross-architecture benchmarking
 - Comparison with MN5 General Purpose and Accelerated Partition

Engineering samples: Functional parts that only partially reflect the exact final product available to the mass market.

NVIDIA Grace Superchip Early Evaluation for HPC Applications

Hardware


MareNostrum5 - Grace Partition

Partition

- 7 racks
- 60 nodes per rack + 48 nodes
- Total: 408 nodes

Node

- 2x NVIDIA Grace CPUs
- 144 cores @ 3.1 GHz
- 240 GB LPDDR5
- IB NDR200 Full fat tree
- 2U chassis with 4 nodes

MareNostrum5 Partitions

	General Purpose Partition GPP	Accelerated Partition ACC	Grace Partition NGP
Architecture	x86	x86	Armv9
Micro-Architecture	Intel Sapphire Rapids	Intel Sapphire Rapids	Neoverse-V2
Frequency	2 GHz	2.3 GHz	3.1 GHz
Number of sockets	2	2	1
CPUs per socket	1	1	2
Cores per CPU	56	40	72
Cache sizes	L1: 32 KB (private) L2: 2048 KB (private) L3: 105 MB (shared)	L1: 32 KB (private) L2: 2048 KB (private) L3: 105 MB (shared)	L1: 64 KB (private) L2: 1024 KB (private) L3: 114 MB (shared)
Memory per node	256 GB	256 GB	240 GB
Memory Technology	DDR5	DDR5	LPDDR5

Benchmarks

Memory Latency:

• LMBench

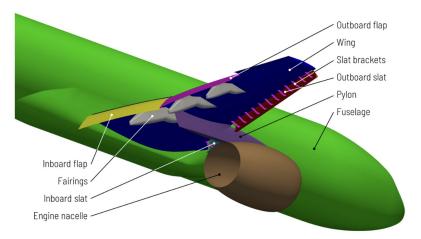
Memory Bandwidth:

- LMBench
- STREAM (OpenMP)

Node-to-node Communication:

• OSU - Ohio State University Micro-Benchmarks

Floating-point Performance:


- HPL
- HPCG

Scientific Application

OpenFOAM:

- OpenFOAM v2312
- Developed by OpenCFD Ltd.
- Written in C++
- Parallelized with MPI
- MB9 micro-benchmark
- Simulation of the HPC Grand Challenge test case of the High Lift Common Research Model (CRM-HL)
- 1 node

System Software

Compilers

- GNU Compiler
- LLVM Compiler
- Arm Compiler (ACFL)
- NVIDIA Compiler

(gcc/14.2.0) (llvm/18.1.14) (acfl/24.10.1) (nvidia-hpc-sdk/24.11) Intel Compiler (oneapi/2023.2.0)

Runtime

- OpenMPI (openmpi/4.1.6)
- MPICH (mpich/4.3.0)
- NVIDIA HPC SDK (nvidia-hpc-sdk/24.11)

Flags

•

-mcpu=neoverse-v2 VS. -march=native

System Software

TALP Performance Metrics:

- Parallel Efficiency:
- Communication Efficiency:
- Load Balance:

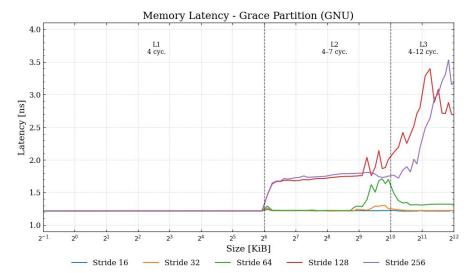
Load balance + communication Wait time + data transfer delays Work evenly split?

Power Monitoring - Energy Aware Runtime (EAR):

- Power:
- Energy:
- Energy-Delay Product (EDP):

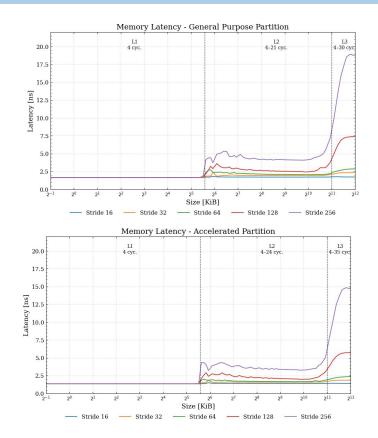
Rate of energy consumption over time Total power consumed during execution Balances energy use and elapsed time

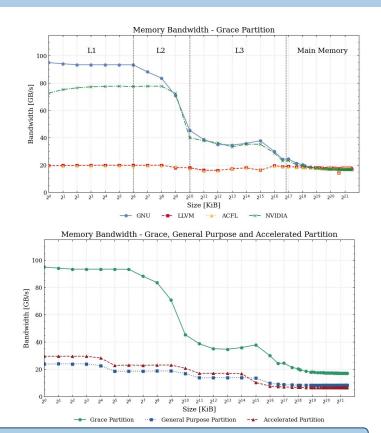
A Generic Performance Analysis Technique Applied to Different CFD Methods for HPC


Energy Optimization and Analysis with EAR

Low-Level Benchmarks

Memory Latency

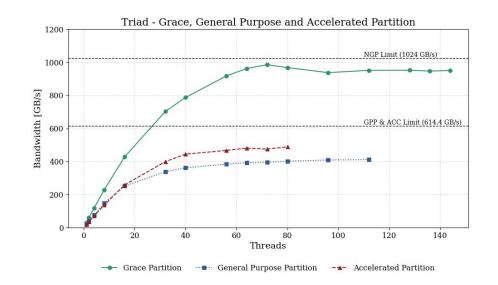

- Does not match expectations
 - Step function that increases with every level
- No increase in latency for smaller strides (16, 32, 64)
- More typical behavior for larger strides


Memory Latency

- Matches predicted performance trends
- Step function that increases with each cache level
- Stark contrast to Grace Partition
- Aggressive hardware prefetcher
- Can dereference pointers with a "Sampling Indirect Prefetcher"

Memory Bandwidth

- Memory bandwidth values differ with compiler
- GNU and NVIDIA deliver higher bandwidth
- LLVM and ACFL show flat behavior
- Similar behavior in other memory related benchmarks with LLVM and ACFL
- Grace partition achieves significantly higher bandwidth compared to GPP and ACC

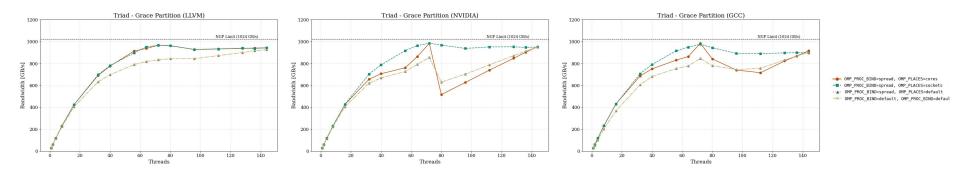


Memory Bandwidth

Grace Partition scales best

(~ 1 TB/s)

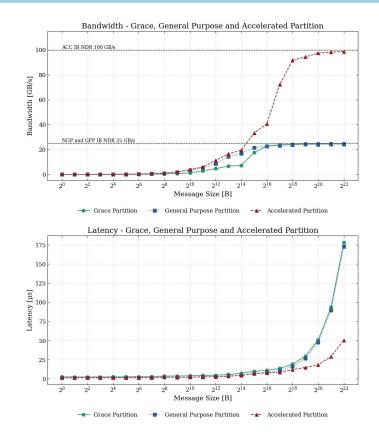
- 95.59% of peak
- Diminishing return after 72 cores
- General Purpose Partition reaches ~400 GB/s
- 65% of peak
- Accelerated Partition reaches ~450 GB/s
- 75.38% of peak



Memory Bandwidth

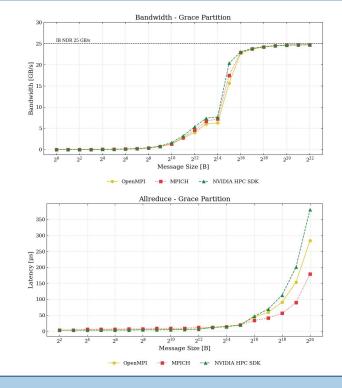
- Substantial variations with different OpenMP bindings
- Dependent on compiler runtime
- LLVM and ACFL work as expected
- NVIDIA and GNU atypical behavior after 1 full CPU

```
OMP_PROC_BIND = [default, spread]
OMP PLACES = [default, cores, sockets]
```



Check bindings and affinity!

Node-to-node Communication


- ACC has highest bandwidth and lowest latency
- NGP and GPP similar behavior
- Grace partition able to utilize Infiniband
 network well
- Bandwidth stays flatter longer for NGP

Node-to-node Communication

- Steep increase after 2¹⁴ B
- NVIDIA HPC SDK ramps up fastest
- All implementations saturate near 25 GB/s
- Similar behavior in other Arm-based machines
- Allreduce is stable for small messages, but increases sharply beyond 2¹⁵ B
- MPICH shows lowest latency overall

Performance and energy consumption of HPC workloads on a cluster based on Arm ThunderX2 CPU

Check runtime options to get the best available one

HPC Benchmarks

HPL

NGP (1 node):

- Rpeak: 7.14 TFLOPS
- RMax: 5.50 TFLOPS
- %Rpeak: 76.96%
- %Memory: 83%

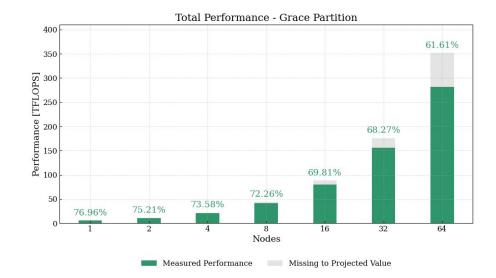
GPP (1 node):

UNIVERSITAT POLITÉCNICA DE CATALUNYA BARCELONATECH Facultat d'Informàtica de Barcelona

BSC

- RMax: 6.61 TFLOPS
- %Rpeak: 92.19%

ACC (1 node - CPU and GPU):


• RMax: 179.70 TFLOPS

edi

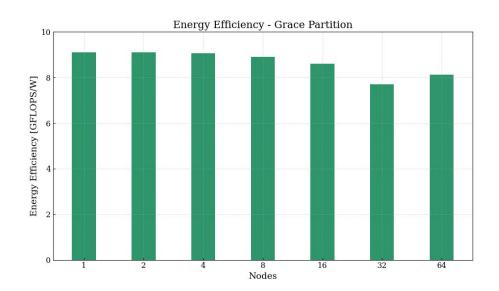
• %Rpeak: 77.46%

FIB

NVIDIA Grace is not a floating-point centric CPU

HPL

NGP (1 node):


- Power: 0.59 kW
- Efficiency: 9.10 GFLOPS/W

GPP (1 node):

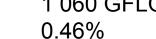
- Power: 0.87 kW
- Efficiency: 7.59 GFLOPS/W

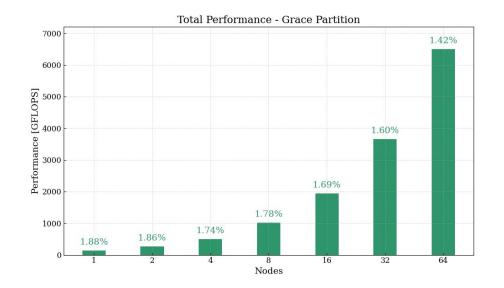
ACC (1 node - CPU and GPU):

- Power: 3.50 kW
- Efficiency: 66.29 GFLOPS/W

HPCG

NGP (1 node):

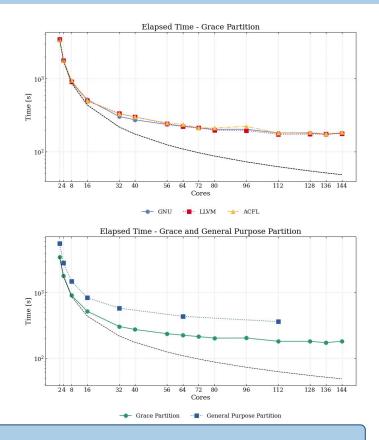

- Rpeak: 7.14 TFLOPS
- RMax: 134 GFLOPS
- %Rpeak: 1.88%
- %Memory: 10%


GPP (1 node):

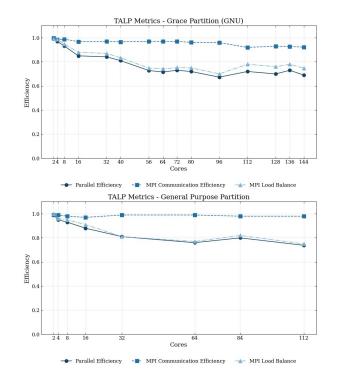
- RMax: 80 GFLOPS
- %Rpeak: 1.16%

ACC (1 node):

- RMax: 1 060 GFLOPS
- %Rpeak:



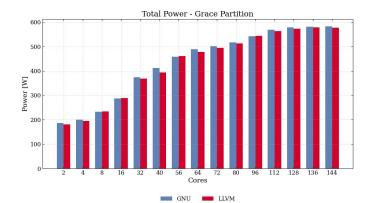
Scientific Application

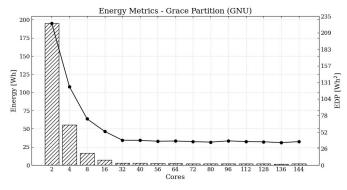

OpenFOAM - Scalability Study

- Execution time decreases as the number of CPU cores increases
- Close to ideal up to 16 cores
- Diminishing return beyond 32 cores
- NGP faster than GPP
- 1.6x faster (3 488 s instead of 5 579 s)
- Internal compiler error when using NVIDIA
- Compiler performance comparable

OpenFOAM - Efficiency Metrics

- MPI Communication Efficiency stays close to ideal
- Both Parallel Efficiency and Load Balance show decrease
- GPP has slightly better Load Balance, but similar Communication Efficiency
- Possible memory bandwidth saturation within 1 node




NVIDIA Grace Superchip Early Evaluation for HPC Applications

OpenFOAM - Energy

- Around 200 W for 2 cores up to 600 W for a full node
- Energy decreases with increasing core count
- Energy Delay Product stagnates too
- 112 cores seems to be the optimal configuration

- Energy ZZZ EDP

Conclusions

How does the NVIDIA Grace CPU compare to others?

- Significant improvements in memory bandwidth
- Often times out of the box improvements
- Underlying hardware behavior is not always fully transparent, making optimization difficult
- Software stack still exhibits minor inconsistencies or bugs
- Check compilers, runtime and flags for differences!

Next Steps

Future Work

Bindings and Flags

• Understanding their behavior better with different compilers and runtime

Hardware

- Gaining deeper insight into memory access patterns
 - Prefetching, compiler issues, NUMA Balancing, page sizes

Next Generation Accelerated cluster

• How does it compare?

Defending the thesis

MareNostrum5's Graceful landing

AHUG25, Hamburg

Majesa Trimmel

Fabio Banchelli

majesa.trimmel@bsc.es

fabio.banchelli@bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

