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The main goal is to analyze and assess quantitatively, compiler and compiler 
options impact on performance.

➢ Identify strengths/weakness of various compilers options and compilers

➢ Leverage optimizations between compilers

➢ Study ISA impact

➢ Develop corresponding methodology and test on a real industrial strength 
application

Objectives



ISSUE: Compiler A can outperform compiler B for loop 47 and the situation can be 
reversed for loop 52       Analysis/assessment has to be automated because we need 
to go down at least to the function level and very often down to the loop level. 

Timing will be performed at three levels: whole app, function level, loop level

Goals require detailed analysis of compiler outputs: assembly code

Relying on MAQAO/ONE View capabilities

➢ To evaluate capabilities, weakness and strengths of various ASM codes using 
simplified simulators

➢ To perform matching between source code and different ASM variants: essential 
requisite to analyze advanced compiler strategies multiversioning

Methodology



Focus on loops: innermost/in between/outermost

Evaluate ASM using CQA (Code Quality Analysis) included in MAQAO. 

➢Generic topics of interest

• Port / Functional Units usage

• Vectorization

• Instruction set use

• Vectorization Roadblocks

• Data access

➢ Two types of analysis: Static at the ASM level and Dynamic requiring measurement

WARNING: By looking directly at ASM, both compiler mistakes but also source code 

issues will be taken into account.

Analyzing Code Quality (1)



Classify performance issues into 5 main categories

1. Loop computation: issues related to the computation organization (FMA, SQRT/DIV, etc…)

2. Control Flow: issues relevant to control (branches, call, ….)

3. Data access: issues essentially related to memory operations (stride, indirect, spill/fill, ….)

4. Vectorization roadblocks: issues preventing vectorization (complex control flow, …)

5. Inefficient vectorization: issues related to vectorization quality (vector length, masked, …)

Analyzing Code Quality (2)



Neoverse N1: Arm C/C++/Fortran Compiler version 22.1 (build number 12) 
(based on LLVM 13.0.1)

Neoverse V1/V2: ACfL 24.10, GNU Fortran2008 13.2.0

Compiler options: O2, O3, O3 + no-sve, O3 + no-sve2

TALK FOCUS: AWS Graviton 4 Results
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Hardware/Software platforms



Target code: OpenRadioss



Realistic data sets have been used. Due to domain decomposition, data 
set size varies depending upon the number of MPI ranks used

• TAURUS (Public): 10 millions elements, reference 1.7 GB, after 
partitioning for 96 MPI ranks 17 GB

Code in Fortran combining MPI + OpenMP parallelism

• Excellent MPI scaling due to very good domain decomposition

• More limited OpenMP parallelism

OUR TWO REFERENCE TESTS: 96 MPI Ranks and 48 MPI Ranks + 2 
OpenMP threads per rank
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Dataset and code parallelism



NUMERICAL ACCURACY

The code uses explicit method with very small time steps. 

Accuracy and reproducibility is major concern. Therefore any code 
transformation which has an impact on numerical accuracy is prohibited. For 
example, fast math compiler flag and even the option enabling fused multiply 
add (FMA) is prohibited

EXECUTION TIME

Due to the nature of the code (mechanical crash), various code segments are 
used throughout the whole simulation => to be realistic (involving all key code 
segments) the run has to be long enough…

TAURUS on 96 cores Neoverse V2 takes over 2 hours!
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Experimental constraints
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Link to MAQAO report

4 essential metrics:

1. Average active time: Sum over all threads of their active time divided 
by thread count. IDEAL = total execution time

2. Activity ratio : Sum over all threads of their active time divided by 
the sum of their wall time. IDEAL: 100%

3. Average active number of threads : Sum over all threads of their 
active time divided by longest wall clock time: IDEAL = number of 
threads used

4. Affinity stability: evaluates percentage of time spent without thread 
migration between physical cores: IDEAL 100%48 MPI Ranks + 2 OMP Threads/ranks

Global Characteristics Taurus GFortan –O3 on G4

https://datafront.maqao.org/public/OpenRadioss/TAURUS10M/G4_AWS/gnu/OpenRadioss_TAURUS10M-short_g4-aws_o2_m48_gnu_engine/
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Limited impact of Compiler Options

Compiler flags: ACfl versus GFortran on AWS G4
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Limited impact of Compiler Options

➢ FOR GFortran: O2 is worse (6%), O3 no-sve is the best

GFortran compiler flags: impact on AWS G4
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Limited impact of Compiler Options ?

➢ For ACfl: O3 no-sve is the worst (5%), O2/O3/O3 no-sve are identical and the best

ACfl compiler flags: impact on AWS G4
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Limited impact of Compiler Options ?

➢ For GFortran: O2 is worse (6%), O3 no-sve is the best
➢ For ACfl: O3 no-sve is the worst (5%), O2/03/O3 no-sve are identical and the best
➢ ACfl is using active waiting counted as activity while GFortran is using passive waiting counted as inactivity
➢ GFortran is better than ACfl: 6%
➢ For both compilers and options: a large amount of time is spent in loops

Compiler flags: ACfl versus GFortran on AWS G4
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Y axis: Time (s). Lower is better

X axis: functions

Every compiler option is losing sometimes, winning at other times

Compiler flags impact: GFortran on AWS G4



i7optcd

Difference comes from a loop conditionally setting arrays values to zero

• no-sve option produces a scalar version taking ~25s

• Without excluding option, SVE version is taking ~90s

Multiple factors: scalar version can use dedicated instructions/registers 
when comparing/setting with zero whereas SVE instruction set lack such 
feature and requires to have every store instruction under predication

i7bucecrit

One of the loop is vectorized in NEON ONLY if SVE is disabled
Bug/Cost model ? Hard to extract or reproduce outside of the application
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GFortran on AWS G4: Some detailed analyses
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Y axis: Time (s). Lower is better

X axis: functions

O3 no-sve is the compiler option with the largest impact (positive 
or negative !)

Compiler flags impact: ACfl on AWS G4
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Red Curve is Best ACfl time / Best GFortran time: greater than 1 means ACfl is slower, 
lower than 1 means GFortran is slower

ACfl is faster

GFortran is faster

Y axis: Time (s). Lower is better

Best ACfl/best GFortran on AWS G4



➢ Analyze more compiler options: fastmath, funroll, etc….

➢ Automate backport from one compiler to the other: pragma insertion: if 
a compiler has been able to vectorize a loop, the information could be 
provided through pragmas to compilers which were unsuccessful in 
vectorizing the same loop. 

➢ Interact with compiler developers to refine/improve cost models

➢ Interact with application developers to use this technology
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Future work



➢ Non uniform behavior of compiler options across subroutines/loops: some 
options perform better with some subroutines

➢ Non uniform behavior between compilers across subroutines/loops: no silver 
bullet compiler….

➢ Non uniform means non negligible performance difference: these 
performance difference are worth exploring/exploiting

Above all of these are well known “generic facts”
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Conclusions



➢ Non uniform behavior of compiler options across subroutines/loops: some 
options perform better with some subroutines

➢ Non uniform behavior between compilers across subroutines/loops: no silver 
bullet compiler….

➢ Non uniform means non negligible performance difference: these 
performance difference are worth exploring/exploiting

Above all of these are well known “generic facts” but MAQAO allows to bring in:

➢ Quantitative estimation : essential for driving optimization

➢ Explanation of performance differences: this opens the door to backport 
optimization between compilers
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Conclusions



Contact:
https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC
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