
OpenACC Execution Models for
Manycore Processor with ARM SVE

Mitsuhisa Sato Team Leader of Programming Environment Team

RIKEN Center for Computational Science (R-CCS)
Professor (Cooperative Graduate School Program), University of Tsukuba

Miwako Tsuji, R-CCS

IWAHPCE, 27th February, 2023

Supercomputer “Fugaku” and A64FX processor
 Ultra-scale “general-purpose” manycore system:

158,976 nodes (1 processor/node, total 7.6 M
cores, theoretical peek 537PFLOPS (DP))

 Arm-based manycore processor: Fujitsu A64FX
(Armv8.2-A SVE 512bit SIMD, #core 48 + 2/4,
3TF@2.0GHz, boost to 2.2GHz)
 12 cores in a cluster of cores called CMG,

connected to L2 and HBM memory chips
 Advanced Memory technology: HBM2 32 GiB,

1024 GB/s bandwidth, packaged in CPU chip
 Scalable Interconnect: ToFu-D interconnect

June 9th, 2022 3

CMG(Core-Memory-Group): NUMA node
12+1 core

HBM2: 8GiB

 Standard programing model is OpenMP-MPI hybrid
programming. running each MPI process on a NUMA node
(CMG).

 48 threads OpenMP is also supported.

Diagram of A64FX processor

Network interface and PCIe are integrated

Motivation and Objectives of OpenACC for A64FX
 OpenACC as a Programming model to exploit parallelism of A64FX

architecture
 HPC oriented design of 64FX
 GPU-like code generation may improve the performance?

Performance Characteristics for A64FX processor

5

 HPC-oriented design
 Small core ⇒ Less O3 resources
 (Relatively) Long pipeline

 9 cycles for floating point operations
 Core has only L1 cache

 High-throughput, but long-latency
 Pipeline often stalls

for loops having complex body.

A64FX : https://github.com/fujitsu/A64FX
Skylake : https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

A64FX Skylake
ReOrder Buffer 128 entries 224 entries
Reservation Station 60 (=10x2+20x2) entries 97 entries
Physical Vector Register 128 (=32 + 96) entries 168 entries
Load Buffer 40 entries 72 entries
Store Buffer 24 entries 56 entries

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

Xeon Skylake, High
Core Count:
4 x 5 tiles, 18 cores, 2
tiles used for memory
interface
485 mm² (22 x 22)

https://www.fujitsu.com/jp/solutions/business-technology/tc/
catalog/ff2019-post-k-computer-development.pdf

A64FX:
400 mm²
(20 x 20)

 A64FX: 52 cores (48 cores),
400 mm² die size (8.3
mm²/core), 7nm FinFET
process (TSMC)

 Xeon Skylake: 20 tiles (5x4),
18 cores, ~485 mm² die size
(estimated) (26.9 mm²/core),
14 nm process (Intel)

 A64FX core is more than 3
times smaller per core.

Performance Tuning for A64FX processor

6

 HPC-oriented design
 Small core ⇒ Less O3 resources
 (Relatively) Long pipeline

 9 cycles for floating point operations
 Core has only L1 cache

 High-throughput, but long-latency
 Pipeline often stalls

for loops having complex body.

 Compiler optimization (Fujitsu compiler)
 SWP: software pipelining

- ～ 20% speedup in Livermore Kernels
 Automatic and Manual loop fissions

A64FX : https://github.com/fujitsu/A64FX
Skylake : https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

A64FX Skylake
ReOrder Buffer 128 entries 224 entries
Reservation Station 60 (=10x2+20x2) entries 97 entries
Physical Vector Register 128 (=32 + 96) entries 168 entries
Load Buffer 40 entries 72 entries
Store Buffer 24 entries 56 entries

Performance improvement by SWP in
Livermore Kernels by Fujitsu compiler

Kernel programming model may allow
more aggressive loop optimizations ???

Motivation and Objectives of OpenACC for A64FX
 OpenACC as a Programming model to exploit parallelism of A64FX

architecture
 HPC oriented design of 64FX
 GPU-like code generation may improve the performance?

 OpenACC as a Programming model for many core wide-SIMD processors
 Not only 64FX. Recent AMD/Intel high-end processors have many cores (more

than 64) with SIMD
 OpenACC may provide other models to describe parallelism of NUMA/core/vector

more than “classic” OpenMP with sperate memory space management.
 Porting OpenACC apps to A64FX and Fugaku
 Many apps are already written in OpenACC

Our compiler infrastructure: Omni Compiler
 Omni compiler is a source-to-source compiler infrastructure
 Omni OpenACC compiler for CUDA is already available

 Currently, we are working on the following two approaches:
 Generating OpenCL code, which is to be compiled by POCL for A64FX
 Generating translated C code with OpenMP SIMD directive for vector

CUDA code

Omni compiler
(OpenACC)

OpenACC
(OpenMP target)

program
OpenCL code

offloaded C code
+ OpenMP SIMD

OpenCL
compiler
(POCL)

A64FX
SVE

Back-end
Native

compiler

RISC-V
Vector

GPU
NVIDA, AMD

OpenACC execution model for A64FX

 OpenACC supports 3-level parallelism
 Gang = PEs

 SM in case of NVIDIA GPU
 CMG (NUMA node) in case of A64FX

 Worker = each PE
 Wraps in case of NVIDIA GPU
 Core in case of A64FX

 Vector = each threads in PE
 Threads in a warp in case of NVIDIA GPU
 SIMD in case of A64FX

CMG(Core-Memory-Group): NUMA node
12+1 core

HBM2: 8GiB

Gangworker

Execution Environment of offloaded code
 Execution by pthread
 Threads are used to execute offloaded code
 Allocate sperate memory for offloaded code and share the memory space

with “host” code
 Easy to move and share the data, but may have side effect from “host”

 Execution by process
 Invoke other process to execute offloaded code
 Move the data by IPC mechanism such as “mmap” system calls
 The process has the different OS resources such as TLBs so that it may

reduce “side effect”.
 Overhead of process switching

Example of translation
 Translation to C code with OpenMP SIMD directive for vectorization
 Execution Environment by pthread
 Example: non-blocking matrix-matrix multiply

#define MAT(a,n_size,i,j) a[n_size*(i)+(j)]
…
#pragma acc parallel
{
#pragma acc loop gang
for (int i = 0; i < n; i++)
for(int j = 0; j < n; j++){

double ip = 0.0;
#pragma acc loop vector

for(int k = 0; k < n; k++)
ip += MAT(x1,n,i,k)*MAT(x2,n,k,j);

MAT(y,n,i,j) = ip;
}

}

// executed by thread running
// on each core
… Schedule iterations …
… assigned iterations given by b and e …
…
for (int i = b; i < e; i++)
for(int j = 0; j < n; j++){

double ip = 0.0;
#pragma omp simd

for(int k = 0; k < n; k++)
ip += MAT(x1,n,i,k)*MAT(x2,n,k,j);

MAT(y,n,i,j) = ip;
}

Matrix-matrix multiply by inner product

Example of translation
 Translation to C code with OpenMP SIMD directive for vectorization
 Execution Environment by pthread
 Example: non-blocking matrix-matrix multiply

#define MAT(a,n_size,i,j) a[n_size*(i)+(j)]
…
#pragma acc parallel
{
#pragma acc loop
for (int i = 0; i < n; i++)

for(int j = 0; j < n; j++)
MAT(y,n,i,j) = 0.0;

#pragma acc loop gang
for (int i = 0; i < n; i++)

for(int k = 0; k < n; k++){
double c = MAT(x1,n,i,k);

#pragma acc loop vector
for(int j = 0; j < n; j++)

MAT(y,n,i,j) += c*MAT(x2,n,k,j);
}

// executed by thread running
// on each core
… Schedule iterations …
… assigned iterations given by b and e …
…
for (int i = b; i < e; i++)

for(int k = 0; k < n; k++){
double c = MAT(x1,n,i,k);

#pragma omp simd
for(int j = 0; j < n; j++)

MAT(y,n,i,j) += c*MAT(x2,n,k,j);
}

Matrix-matrix multiply by cross product

Preliminary evaluation
 Translation to C code with OpenMP SIMD directive for

vectorization
 Benchmark
 Stream benchmark
 Matrix-multiplication by inner product
 Matrix-multiplication by cross product

 Backend compilers
 Fujitsu
 gcc
 llvm

Preliminary results

 Backend compilers
 gcc 11.2

 -fopenmp -march=armv8.2-a+sve -
msve-vector-bits=512 -
mtune=a64fx -ffast-math -O3

 Fujitsu compiler (fcc)
 -Kfast –fopenmp

 Some improvements were found
because the transformation helps
good vectorization for inner loop

 In most cases, the performance is
the same as OpenMP

 No performance improvement by
SIMD directive since vectorization
is done by compiler.

 Inner production version is very
slower than cross product version.

0

100

200

300

400

500

600

1 2 3

stream (gcc)

0

100

200

300

400

500

600

1 2 3

Stream (fcc)

0

2

4

6

8

1 2 3

matrix multiply with innter prod (gcc)

0

2

4

6

8

1 2 3

matrix multiply with innter prod (fcc)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3

matrix multiply with cross prod (gcc)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3

matrix multiply with cross prod (fcc)

M
em

or
y

ba
nd

w
id

th
 (G

B/
s)

be
tt

er

Ex
ec

ut
io

n
Ti

m
e

(s
)

Ex
ec

ut
io

n
Ti

m
e

(s
)

be
tt

er
be

tt
er

size=10000000 size=20000000 size=30000000 size=10000000 size=20000000 size=30000000

size=1000 size=1500 size=2000 size=1000 size=1500 size=2000

size=1000 size=1500 size=2000size=1000 size=1500 size=2000

OpenMP

Translated C coded from OpenACC

Translated C code with SIMD directive
from OpenACC

10 iterations 10 iterations

10 iterations10 iterations

Preliminary results
 Backend compiler
 llvm 12.0.1

 -fopenmp -Ofast -ffast-math -march=armv8-
a+sve -ffp-contract=on -mllvm -aarch64-sve-
vector-bits-min=512 –mllvm -aarch64-sve-vector-
bits-max=512

 Some improvements were found as fcc

0

100

200

300

400

500

600

1 2 3

stream (llvm)

0

2

4

6

8

1 2 3

matrix multiply with innter prod
(llvm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3

matrix multiply with cross prod (llvm)

OpenMP

Translated C coded from OpenACC

Translated C code with SIMD directive
from OpenACC

size=10000000 size=20000000 size=30000000 size=1000 size=1500 size=2000 size=1000 size=1500 size=2000

Offload to other nodes
 “Execution by process” can

be extended to “execution
by other nodes”
 Useful to exploit other

parallelism
 Need asynchronous

offloading

 Question: may it be better
than all nodes used as MPI
process?

Host code

Offloaded
codeHost code

Host code

Offloaded
code

Offloaded
code

Host code Offloaded
code

1 node
(Execution
by process)

2 nodes

3 nodes

Concluding remarks
 We are currently working on OpenACC compiler for A64FX

 Several design choices such as code generation and execution environments.
 We expect that OpenACC programming model provides other possibilities to exploit

parallelism of manycore with wide-SIMD using NUMA/core/vectors
 It may be applied to recent high-end processors such as AMD and Intel.

 Our preliminary experimental results still need to be examined.
 We need to examine more complicated loops by OpenACC, and other implementation of

execution environment such as POCL and by process
 We are also working on OpenCL (POCL) which can be used as a backend of our

OpenACC compiler
 OpenCL kernel programming is expected to allow an aggressive optimization.

 Evaluation and tuning of OpenACC gcc (or llvm?) as a native compiler for A64FX
 The current version of “gcc –fopenacc” for A64FX has a problem (not executed in

parallel?)

	スライド番号 1
	Supercomputer “Fugaku”
	Supercomputer “Fugaku” and A64FX processor�
	Motivation and Objectives of OpenACC for A64FX
	Performance Characteristics for A64FX processor
	Performance Tuning for A64FX processor
	Motivation and Objectives of OpenACC for A64FX
	Our compiler infrastructure: Omni Compiler
	OpenACC execution model for A64FX
	Execution Environment of offloaded code
	Example of translation
	Example of translation
	Preliminary evaluation
	Preliminary results
	Preliminary results
	Offload to other nodes
	Concluding remarks
	Thank you for your attention�Q & A
	Preliminary results
	その他　 (ESSPERについて）
	OpenCL/OpenACCのメリットは何か？
	Offloaded codeの実行方式について
	OpenACCの実行モデル
	スライド番号 24

