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SVE instruction set | Background

⚫ SVE (Scalable Vector Extension) 
instruction set
⚫ ARM’s new vector instruction

⚫ SIMD register size

⚫ Specified as a multiple of 128, up to 2,048.

⚫ Can be selected by CPU manufacturer.

⚫ CPU supporting SVE 

⚫Fujitsu A64FX

⚫ Used in supercomputer Fugaku

⚫ 512 bits vector length

⚫AWS graviton3

⚫ 256 bits vector length

Supercomputer Fugaku

AWS Graviton3Fujitsu A64FX https://www.fujitsu.com/jp/about/resources/publications/technicalreview/2020-03/
https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
https://www.itmedia.co.jp/news/articles/2112/01/news088.html
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NumPy | Background
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⚫ NumPy is the primary Python math library. 
⚫ Used in various applications such as scientific 

domain and machine learning.

⚫ Time consuming: 

⚫ Such Python applications leave most of 
processing to NumPy. 

⚫ NumPy occupies 75% of processing time in 
LiNGAM.

⚫ NumPy is essential to speeding-up of 
Python applications.

Applications using NumPy

Quantum computing 
framework

Analysis tool

LiNGAM
Causal inference 3



Issue

⚫ NumPy currently does not support SVE.
⚫ Python applications using NumPy do not run fast as expected.
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ASIMD
(NEON)

Arm CPUs

https://www.debian.org/ports/powe
rpc/index.ja.html

https://www.sammobile.co
m/news/galaxy-s23-arm-
cortex-x3-a715-a510-cpu-
cores-improved-
performance-efficiency/

https://www.intel.co.jp/content/ww
w/jp/ja/products/docs/processors/co
re/13th-gen-processors.html

Supported
Architecture

Hardware

SVE

Not 
supported

SSE AVX2
AVX
512

VEC

Intel CPUs PowerPC CPUs
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Purpose of this work

⚫Support of vectorized operation using SVE for speed-up

⚫Current situation
⚫Arithmetic operations (addition, multiplication, etc.)

⚫ Fujitsu’s effort (but not accepted so far)

⚫ See “Implementation of NumPy AArch64 SVE support and its performance evaluation” in IPSJ SIG 
Technical Reports,2022-HPC-187(17),1-8 (2022-11-24) , 2188-8841

⚫ ASIMD (NEON) version is available, but only 128-bit length.

⚫Transcendental functions (sin, log, exp, etc.)

⚫ Not supported, scalar operation using libm only. 

⚫Contribution
⚫Implementation of vectorized transcendental functions using SVE in 

NumPy
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Source Code Structure (current)
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Python
implementation

C implementation
(CPU independent)

#define for SSE

#define for AVX2

#define for AVX512F

#define for NEON

#define for SVE
(Fujitsu’s work)

Python
implementation

C implementation
(CPU independent)

SVML
library

GNU C 
library

(libm.so)

Function call

#include

Function call

If AVX512

Arithmetic operations Transcendental functions

Dynamic link

Otherwise
not vectorizedvectorized

vectorized
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Source code structure (new)
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Python
implementation

C implementation
(CPU independent)

SVML
library

GNU C 
library

(libm.so)

Function call

If AVX512

Dynamic link

Otherwise

Fast C 
implementation 

If SVE

We implemented three 
schemes

1. SIMD-style operation

2. Inlining
To reduce function calls.

3. Loop-unrolling
To efficiently use operation 
units

Transcendental functions

not vectorizedvectorized vectorized
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1. SIMD-style implementation

⚫ Issue: Coding difficultly
⚫Each transcendental function has a large number (up to 250) of lines.

⚫ Note: arithmetic function typically has 3 lines. 

⚫Manual coding is impractical.

⚫Proposal: Use of the SIMD operations library SLEEF
⚫ SLEEF supports various instruction sets such as NEON and SVE.

⚫ Implemented for SVE by ACLE (SVE built-in functions)

⚫Boost Software License 1.0 (BSL -1.0)
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1. Example: log10()

⚫ Using SLEEF instead of libm

© 2023 Fujitsu Limited

library
NumPy

call

...

Functions called 
by the user
ex) np.log10()

Function to 
calculate log10

log10
of libm

npy_log10(){
...
libm_log10()

}

Before

After

library

NumPy

call

...

Functions called 
by the user
ex) np.log10()

Function to calculate 
log10

npy_log10(){
...

sleef_log10_sve()
}

log10
of SLEEF

one vector data

sleef_log10_sve()

libm_log10()

one element

not vectorized

vectorized

double

svfloat64_t

Overhead
occurs
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Further speed up | 2. Inlining

⚫ Issue of using SLEEF: overhead of function call.

⚫ Proposal: inlined SLEEF
⚫ The number of times of coefficient load and register save/return is reduced.
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Our method to speed-up
1. SIMD by SLEEF
2. Inlining
3. Loop-unrolling
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2. Inlining
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NumPy

Function to calculate log10

libraryNumPy Overhead

call

...

log10
SLEEF

npy_log10(){
sleef_log10_sve(){

}
}

Before

After

Functions called 
by the user
ex) np.log10()

Function to 
calculate log10

npy_log10(){
...

sleef_log10_sve()
}

Functions called 
by the user
ex) np.log10()

Source code of SLEEF 
log10

svfloat64_t xa = 
svld1_f64(tp, src+j);
svfloat64_t ua = 
vadd_vd_vd_vd_sve_sle
ef(tp, xa)
...

binary

source code

To reduce overhead

svfloat64_t

Copy 
& 

Paste
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Further speed up | 3. loop-unrolling

⚫Proposal: Loop-unrolling
⚫Improve computing efficiency and reduce processing time by 

performing instruction sequence in parallel.

© 2023 Fujitsu Limited

Our method to speed-up
1. SLEEF
2. Inline
3. Loop-unrolling

12



const int n = 1024;
const int l = 1000000;
double src[n];
double dst[n];
int vstep = 8; /* num of SIMD lanes */
const svbool_t tp = svptrue_b64();

for (int k=0; k<l; k++){
int j = 0;
for (int i=n; i > 2*vstep; i -= 2*vstep, j += 2*vstep) {

svfloat64_t xa = svld1_f64(tp, src+j);
svfloat64_t xb = svld1_f64(tp, src+j+vstep);
...
svfloat64_t ua = vadd_vd_vd_vd_sve_sleef(tp, xa)
svfloat64_t ub = vadd_vd_vd_vd_sve_sleef(tp, xb)
...
svst1_f64(tp, dst+j, xa);
svst1_f64(tp, dst+j+vstep, xb);

}}

Example of loop unrolling

⚫ We implemented loop-unrolling source code.
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const int n = 1024;
const int l = 1000000;
double src[n];
double dst[n];
int vstep = 8; /* num of SIMD lanes */
const svbool_t tp = svptrue_b64();

for (int k=0; k<l; k++){
int j = 0;
for (int i=n; i > vstep; i -= vstep, j += vstep) {

svfloat64_t x = svld1_f64(tp, src+j);
...
svfloat64_t ua = vadd_vd_vd_vd_sve_sleef(tp, xa)
...
svst1_f64(tp, dst+j, x);

}}

Two vector 
processed

Before
without loop-unrolling

After
with loop-unrolling 2

※The method using pragma did not produce the intended assembler code.

Unfold the 
processing of 2 
loops into 1 loop

Expanding of SLEEF 
log10 function Each sub-process of two 

vectors are performed 
alternately.
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The number of loop unrolling

Optimal number of unrollings | Results

⚫ We analyze the effect of changing 
the number of unrolls. 

⚫ The speed-up ratio saturates at 4 
for Log10. 

⚫ Optimal number is dependent to 
the operation.

⚫Since each transcendental function 
uses different number of registers.

© 2023 Fujitsu Limited

Fast
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Experimental environment | 1. SIMD+2. inlined
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Machine PRIMEHPC FX700

CPU Fujitsu A64FX

Num of used core 1 core

OS CentOS Linux 8

Compiler
Fujitsu compiler
(trad mode)

Optimization option -O3, -Kfast

NumPy v1.23.3

Tested function log10

Python source code for log10
⚫ Array Size: 1024
⚫ Iteration: 1 million times
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Summary of speed-up rate | Results

⚫ 1. SIMD by SLEEF
⚫ log10: 4.1 times faster

⚫ 2. Inline
⚫ log10: 0.3 times faster

⚫ 3. Loop-unrolling
⚫ log10: 0.7 times faster(unroll 4)

⚫ 1+2+3
⚫ log10: 5.11 times faster

⚫ (1+2+3+ -Kfast option)
⚫ log10: 10.8 times faster

⚫ Fujitsu compiler option

⚫ Stronger optimization than -O3

⚫ With the -Kfast, it does not pass 
the NumPy test.

© 2023 Fujitsu Limited

3. Loop-
unrolling 4

NumPy
v1.23.3

2. Inlining1. SIMD
by SLEEF
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Profiling | Results
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2. Inlining
3. Loop-
unrolling 4
with -Kfast

3. Loop-
unrolling 4

Profiling results

1. SIMD 
by SLEEF

NumPy
v1.23.3

⚫ Instruction commit time
⚫ One to four instruction committed 

per clock.

⚫ Operation wait time
⚫ The performance drops if this time 

becomes long.

⚫ Memory/cache access wait
⚫ The performance drops if this time 

becomes long.

⚫ In loop-unrolling, register spills 
occurs.
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GFLOPS | Resluts
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Speed-up in other functions

⚫ Ongoing work

⚫ Speed-up by 1. SLEEF, 2. 
inlining.
⚫ log10 (previously mentioned)

⚫ 4.42 times faster

⚫ exp2

⚫ 10.62 times faster
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Conclusion
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Goal

Methods

Results (speed-up)

⚫ To optimize vectorized transcendental functions of NumPy for CPU with SVE

1. SIMD by SLEEF

2. Inlining

3. Loop-unrolling

⚫ Finally

⚫ log10:  5.1 times speed-up (fcc, -O3)
20



Supplement

⚫NumPy with scheme 1 “SIMD by SLEEF (ASIMD version)” is 
already available.
⚫Repository: https://github.com/yamadafuyuka/numpy/

⚫Branch: add_SLEEF

⚫Support functions: log2, log10, exp2.

⚫SLEEF installation is needed for use.

⚫We haven’t released the SVE version yet.

© 2023 Fujitsu Limited21
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