
Optimization of NumPy
transcendental functions
for Arm SVE

Fuyuka YAMADA, Kentaro KAWAKAMI, Kouji KURIHARA,

Kazuhito MATSUDA, and Tsuguchika TABARU

Computing Laboratory, Fujitsu Limited

© 2023 Fujitsu Limited1

© 2023 Fujitsu Limited

SVE instruction set | Background

⚫ SVE (Scalable Vector Extension)
instruction set
⚫ ARM’s new vector instruction

⚫ SIMD register size

⚫ Specified as a multiple of 128, up to 2,048.

⚫ Can be selected by CPU manufacturer.

⚫ CPU supporting SVE

⚫Fujitsu A64FX

⚫ Used in supercomputer Fugaku

⚫ 512 bits vector length

⚫AWS graviton3

⚫ 256 bits vector length

Supercomputer Fugaku

AWS Graviton3Fujitsu A64FX https://www.fujitsu.com/jp/about/resources/publications/technicalreview/2020-03/
https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
https://www.itmedia.co.jp/news/articles/2112/01/news088.html

2

https://www.itmedia.co.jp/news/articles/2112/01/news088.html
https://www.itmedia.co.jp/news/articles/2112/01/news088.html
https://www.itmedia.co.jp/news/articles/2112/01/news088.html

NumPy | Background

© 2023 Fujitsu Limited

⚫ NumPy is the primary Python math library.
⚫ Used in various applications such as scientific

domain and machine learning.

⚫ Time consuming:

⚫ Such Python applications leave most of
processing to NumPy.

⚫ NumPy occupies 75% of processing time in
LiNGAM.

⚫ NumPy is essential to speeding-up of
Python applications.

Applications using NumPy

Quantum computing
framework

Analysis tool

LiNGAM
Causal inference 3

Issue

⚫ NumPy currently does not support SVE.
⚫ Python applications using NumPy do not run fast as expected.

© 2023 Fujitsu Limited

ASIMD
(NEON)

Arm CPUs

https://www.debian.org/ports/powe
rpc/index.ja.html

https://www.sammobile.co
m/news/galaxy-s23-arm-
cortex-x3-a715-a510-cpu-
cores-improved-
performance-efficiency/

https://www.intel.co.jp/content/ww
w/jp/ja/products/docs/processors/co
re/13th-gen-processors.html

Supported
Architecture

Hardware

SVE

Not
supported

SSE AVX2
AVX
512

VEC

Intel CPUs PowerPC CPUs

4

https://www.debian.org/ports/powerpc/index.ja.html
https://www.sammobile.com/news/galaxy-s23-arm-cortex-x3-a715-a510-cpu-cores-improved-performance-efficiency/
https://www.intel.co.jp/content/www/jp/ja/products/docs/processors/core/13th-gen-processors.html

Purpose of this work

⚫Support of vectorized operation using SVE for speed-up

⚫Current situation
⚫Arithmetic operations (addition, multiplication, etc.)

⚫ Fujitsu’s effort (but not accepted so far)

⚫ See “Implementation of NumPy AArch64 SVE support and its performance evaluation” in IPSJ SIG
Technical Reports,2022-HPC-187(17),1-8 (2022-11-24) , 2188-8841

⚫ ASIMD (NEON) version is available, but only 128-bit length.

⚫Transcendental functions (sin, log, exp, etc.)

⚫ Not supported, scalar operation using libm only.

⚫Contribution
⚫Implementation of vectorized transcendental functions using SVE in

NumPy

© 2023 Fujitsu Limited5

Source Code Structure (current)

© 2023 Fujitsu Limited

Python
implementation

C implementation
(CPU independent)

#define for SSE

#define for AVX2

#define for AVX512F

#define for NEON

#define for SVE
(Fujitsu’s work)

Python
implementation

C implementation
(CPU independent)

SVML
library

GNU C
library

(libm.so)

Function call

#include

Function call

If AVX512

Arithmetic operations Transcendental functions

Dynamic link

Otherwise
not vectorizedvectorized

vectorized

6

Source code structure (new)

© 2023 Fujitsu Limited

Python
implementation

C implementation
(CPU independent)

SVML
library

GNU C
library

(libm.so)

Function call

If AVX512

Dynamic link

Otherwise

Fast C
implementation

If SVE

We implemented three
schemes

1. SIMD-style operation

2. Inlining
To reduce function calls.

3. Loop-unrolling
To efficiently use operation
units

Transcendental functions

not vectorizedvectorized vectorized

7

1. SIMD-style implementation

⚫ Issue: Coding difficultly
⚫Each transcendental function has a large number (up to 250) of lines.

⚫ Note: arithmetic function typically has 3 lines.

⚫Manual coding is impractical.

⚫Proposal: Use of the SIMD operations library SLEEF
⚫ SLEEF supports various instruction sets such as NEON and SVE.

⚫ Implemented for SVE by ACLE (SVE built-in functions)

⚫Boost Software License 1.0 (BSL -1.0)

© 2023 Fujitsu Limited8

1. Example: log10()

⚫ Using SLEEF instead of libm

© 2023 Fujitsu Limited

library
NumPy

call

...

Functions called
by the user
ex) np.log10()

Function to
calculate log10

log10
of libm

npy_log10(){
...
libm_log10()

}

Before

After

library

NumPy

call

...

Functions called
by the user
ex) np.log10()

Function to calculate
log10

npy_log10(){
...

sleef_log10_sve()
}

log10
of SLEEF

one vector data

sleef_log10_sve()

libm_log10()

one element

not vectorized

vectorized

double

svfloat64_t

Overhead
occurs

9

Further speed up | 2. Inlining

⚫ Issue of using SLEEF: overhead of function call.

⚫ Proposal: inlined SLEEF
⚫ The number of times of coefficient load and register save/return is reduced.

© 2023 Fujitsu Limited

Our method to speed-up
1. SIMD by SLEEF
2. Inlining
3. Loop-unrolling

10

2. Inlining

© 2023 Fujitsu Limited

NumPy

Function to calculate log10

libraryNumPy Overhead

call

...

log10
SLEEF

npy_log10(){
sleef_log10_sve(){

}
}

Before

After

Functions called
by the user
ex) np.log10()

Function to
calculate log10

npy_log10(){
...

sleef_log10_sve()
}

Functions called
by the user
ex) np.log10()

Source code of SLEEF
log10

svfloat64_t xa =
svld1_f64(tp, src+j);
svfloat64_t ua =
vadd_vd_vd_vd_sve_sle
ef(tp, xa)
...

binary

source code

To reduce overhead

svfloat64_t

Copy
&

Paste

11

Further speed up | 3. loop-unrolling

⚫Proposal: Loop-unrolling
⚫Improve computing efficiency and reduce processing time by

performing instruction sequence in parallel.

© 2023 Fujitsu Limited

Our method to speed-up
1. SLEEF
2. Inline
3. Loop-unrolling

12

const int n = 1024;
const int l = 1000000;
double src[n];
double dst[n];
int vstep = 8; /* num of SIMD lanes */
const svbool_t tp = svptrue_b64();

for (int k=0; k<l; k++){
int j = 0;
for (int i=n; i > 2*vstep; i -= 2*vstep, j += 2*vstep) {

svfloat64_t xa = svld1_f64(tp, src+j);
svfloat64_t xb = svld1_f64(tp, src+j+vstep);
...
svfloat64_t ua = vadd_vd_vd_vd_sve_sleef(tp, xa)
svfloat64_t ub = vadd_vd_vd_vd_sve_sleef(tp, xb)
...
svst1_f64(tp, dst+j, xa);
svst1_f64(tp, dst+j+vstep, xb);

}}

Example of loop unrolling

⚫ We implemented loop-unrolling source code.

© 2023 Fujitsu Limited

const int n = 1024;
const int l = 1000000;
double src[n];
double dst[n];
int vstep = 8; /* num of SIMD lanes */
const svbool_t tp = svptrue_b64();

for (int k=0; k<l; k++){
int j = 0;
for (int i=n; i > vstep; i -= vstep, j += vstep) {

svfloat64_t x = svld1_f64(tp, src+j);
...
svfloat64_t ua = vadd_vd_vd_vd_sve_sleef(tp, xa)
...
svst1_f64(tp, dst+j, x);

}}

Two vector
processed

Before
without loop-unrolling

After
with loop-unrolling 2

※The method using pragma did not produce the intended assembler code.

Unfold the
processing of 2
loops into 1 loop

Expanding of SLEEF
log10 function Each sub-process of two

vectors are performed
alternately.

13

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7 8

S
p

e
e
d

-u
p

 r
a
ti

o

c
o
m

p
a
re

 t
o
 n

o
n

 u
n

ro
ll
in

g
 a

s
 1

The number of loop unrolling

Optimal number of unrollings | Results

⚫ We analyze the effect of changing
the number of unrolls.

⚫ The speed-up ratio saturates at 4
for Log10.

⚫ Optimal number is dependent to
the operation.

⚫Since each transcendental function
uses different number of registers.

© 2023 Fujitsu Limited

Fast

14

Experimental environment | 1. SIMD+2. inlined

© 2023 Fujitsu Limited

Machine PRIMEHPC FX700

CPU Fujitsu A64FX

Num of used core 1 core

OS CentOS Linux 8

Compiler
Fujitsu compiler
(trad mode)

Optimization option -O3, -Kfast

NumPy v1.23.3

Tested function log10

Python source code for log10
⚫ Array Size: 1024
⚫ Iteration: 1 million times

15

Summary of speed-up rate | Results

⚫ 1. SIMD by SLEEF
⚫ log10: 4.1 times faster

⚫ 2. Inline
⚫ log10: 0.3 times faster

⚫ 3. Loop-unrolling
⚫ log10: 0.7 times faster(unroll 4)

⚫ 1+2+3
⚫ log10: 5.11 times faster

⚫ (1+2+3+ -Kfast option)
⚫ log10: 10.8 times faster

⚫ Fujitsu compiler option

⚫ Stronger optimization than -O3

⚫ With the -Kfast, it does not pass
the NumPy test.

© 2023 Fujitsu Limited

3. Loop-
unrolling 4

NumPy
v1.23.3

2. Inlining1. SIMD
by SLEEF

1.00

4.10
4.42

5.11

10.08

1

2

3

4

5

6

7

8

9

10

11

S
p

e
e
d

-u
p

 r
a
ti

o

3. Loop-
unrolling 4
with -Kfast

16

0.0E+00

5.0E+00

1.0E+01

1.5E+01

2.0E+01

2.5E+01

3.0E+01

Profiling | Results

© 2023 Fujitsu Limited

2. Inlining
3. Loop-
unrolling 4
with -Kfast

3. Loop-
unrolling 4

Profiling results

1. SIMD
by SLEEF

NumPy
v1.23.3

⚫ Instruction commit time
⚫ One to four instruction committed

per clock.

⚫ Operation wait time
⚫ The performance drops if this time

becomes long.

⚫ Memory/cache access wait
⚫ The performance drops if this time

becomes long.

⚫ In loop-unrolling, register spills
occurs.

P
ro

c
e
s
s
in

g
 t

im
e
 [

s
]

1 2 3 4

17

GFLOPS | Resluts

© 2023 Fujitsu Limited

0.34
2.74 3.13 3.39

7.17

17.17

64

0

10

20

30

40

50

60

70

G
F
L
O

P
S

2. Inlining 3. Loop-
unrolling 4
with -Kfast

3. Loop-
unrolling 4

1. SIMD
by SLEEF

NumPy
v1.23.3

Theoretical
performance
of A64FX

Only C code,
loop-
unrolling
with -Kfast

Without
NumPy
overhead

When all
are FMA

Using
–Kfast
option

18

Speed-up in other functions

⚫ Ongoing work

⚫ Speed-up by 1. SLEEF, 2.
inlining.
⚫ log10 (previously mentioned)

⚫ 4.42 times faster

⚫ exp2

⚫ 10.62 times faster

© 2023 Fujitsu Limited

1.00

10.62

1.00

4.42

1

3

5

7

9

11

13

S
p

e
e
d

-u
p

 r
a
ti

o

c
o
m

p
a
re

 t
o
 n

o
n

 u
n

ro
ll
in

g
 a

s
 1 exp2

log10

NumPy
v1.23.3

1. SLEEF
+2. inlining

19

Conclusion

© 2023 Fujitsu Limited

Goal

Methods

Results (speed-up)

⚫ To optimize vectorized transcendental functions of NumPy for CPU with SVE

1. SIMD by SLEEF

2. Inlining

3. Loop-unrolling

⚫ Finally

⚫ log10: 5.1 times speed-up (fcc, -O3)
20

Supplement

⚫NumPy with scheme 1 “SIMD by SLEEF (ASIMD version)” is
already available.
⚫Repository: https://github.com/yamadafuyuka/numpy/

⚫Branch: add_SLEEF

⚫Support functions: log2, log10, exp2.

⚫SLEEF installation is needed for use.

⚫We haven’t released the SVE version yet.

© 2023 Fujitsu Limited21

https://github.com/yamadafuyuka/numpy/

Thank you

yamada.fuyuka@fujitsu.com

© 2023 Fujitsu Limited

Thank you

