

Optimization of NumPy transcendental functions for Arm SVE

Fuyuka YAMADA, Kentaro KAWAKAMI, Kouji KURIHARA,

Kazuhito MATSUDA, and Tsuguchika TABARU

Computing Laboratory, Fujitsu Limited

© 2023 Fujitsu Limited

SVE instruction set | Background

Supercomputer Fugaku

Fujitsu A64FX

AWS Graviton3

 SVE (Scalable Vector Extension) instruction set

- ARM's new vector instruction
- SIMD register size
 - Specified as a multiple of 128, up to 2,048.
 - Can be selected by CPU manufacturer.
- CPU supporting SVE
 - Fujitsu A64FX
 - Used in supercomputer Fugaku
 - 512 bits vector length
 - AWS graviton3
 - 256 bits vector length

https://www.fujitsu.com/jp/about/resources/publications/technicalreview/2020-03/ https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/ https://www.itmedia.co.jp/news/articles/2112/01/news088.html

NumPy | Background

FUJITSU

- NumPy is the primary Python math library.
 - Used in various applications such as scientific domain and machine learning.
 - Time consuming:
 - Such Python applications leave most of processing to NumPy.
 - NumPy occupies 75% of processing time in LiNGAM.
- NumPy is essential to speeding-up of Python applications.

Applications using NumPy

Analysis tool

Quantum computing framework

LiNGAM Causal inference

Issue

- NumPy currently does not support SVE.
 - Python applications using NumPy do not run fast as expected.

Purpose of this work

- Support of vectorized operation using SVE for speed-up
- Current situation
 - Arithmetic operations (addition, multiplication, etc.)
 - Fujitsu's effort (but not accepted so far)
 - See "Implementation of NumPy AArch64 SVE support and its performance evaluation" in IPSJ SIG Technical Reports, 2022-HPC-187(17), 1-8 (2022-11-24), 2188-8841
 - ASIMD (NEON) version is available, but only 128-bit length.
 - Transcendental functions (sin, log, exp, etc.)
 - Not supported, scalar operation using libm only.
- Contribution
 - Implementation of vectorized transcendental functions using SVE in NumPy

Source Code Structure (current)

Source code structure (new)

Transcendental functions

We implemented three schemes

- 1. SIMD-style operation
- **2. Inlining** To reduce function calls.
- **3.** Loop-unrolling To efficiently use operation units

1. SIMD-style implementation

FUJITSU

• Issue: Coding difficultly

- Each transcendental function has a large number (up to 250) of lines.
 - Note: arithmetic function typically has 3 lines.
- Manual coding is impractical.

Proposal: Use of the SIMD operations library SLEEF

- SLEEF supports various instruction sets such as NEON and SVE.
 - Implemented for SVE by ACLE (SVE built-in functions)
- Boost Software License 1.0 (BSL -1.0)

1. Example: log10()

Further speed up | 2. Inlining

- Issue of using SLEEF: overhead of function call.
- Proposal: inlined SLEEF
 - The number of times of coefficient load and register save/return is reduced.

Our method to speed-up 1. SIMD by SLEEF

- 2. Inlining
- 3. Loop-unrolling

2. Inlining

Proposal: Loop-unrolling

• Improve computing efficiency and reduce processing time by performing instruction sequence in parallel.

Our method to speed-up

- 1. SLEEF
- 2. Inline
- 3. Loop-unrolling

Example of loop unrolling

Unfold the processing of 2 loops into 1 loop

<pre>onst int n = 1024; onst int l = 1000000; ouble src[n]; ouble dst[n]; nt vstep = 8; /* num of SIMD lanes */ onst svbool_t tp = svptrue_b64();</pre>	
or (int k=0; k <l; k++){<br="">int j = 0; for (int i=n; i > 2*vstep; i -= 2*vstep</l;>	, j += 2*vstep) Two vector processed
<pre>svfloat64_t xa = svld1_f64(tp, src+j) svfloat64_t xb = svld1_f64(tp, src+j+ svfloat64_t ua = vadd_vd_vd_vd_sve_s1 svfloat64_t ub = vadd_vd_vd_vd_sve_s1 svst1_f64(tp, dst+j, xa);</pre>	; vstep); eef(tp, xa) eef(tp, xb)
<pre>svst1_f64(tp, dst+j+vstep, xb); }</pre>	Each sub-process of two vectors are performed alternately.

*The method using pragma did not produce the intended assembler code.

Optimal number of unrollings | Results

- We analyze the effect of changing the number of unrolls.
- The speed-up ratio saturates at 4 for Log10.
- Optimal number is dependent to the operation.
 - Since each transcendental function uses different number of registers.

Experimental environment | 1. SIMD+2. inlined

Machine	PRIMEHPC FX700
CPU	Fujitsu A64FX
Num of used core	1 core
OS	CentOS Linux 8
Compiler	Fujitsu compiler (trad mode)
Optimization option	-O3, -Kfast
NumPy	v1.23.3
Tested function	log10

import numpy as np	
num = 1024 step = 1000000	
a = np.random.rand(num)	
<pre>for i in range(step): b = np.log10(a)</pre>	

Python source code for log10

- Array Size: 1024
- Iteration: 1 million times

Summary of speed-up rate | Results

- 1. SIMD by SLEEF
 - log10: 4.1 times faster
- 2. Inline
 - Iog10: 0.3 times faster
- 3. Loop-unrolling
 - log10: 0.7 times faster(unroll 4)

• 1+2+3

- Iog10: 5.11 times faster
- (1+2+3+ -Kfast option)
 - log10: 10.8 times faster
 - Fujitsu compiler option
 - Stronger optimization than -O3
 - With the -**Kfast**, it does not pass the NumPy test.

Profiling | Results

Profiling results

- Instruction commit time
 - One to four instruction committed per clock.
- Operation wait time

3

4

• The performance drops if this time becomes long.

Memory/cache access wait

- The performance drops if this time becomes long.
- In loop-unrolling, register spills occurs.

GFLOPS | Resluts

When all are FMA

Speed-up in other functions

- Ongoing work
- Speed-up by 1. SLEEF, 2. inlining.
 - log10 (previously mentioned)
 - 4.42 times faster
 - exp2
 - 10.62 times faster

Conclusion

Goal

• To optimize vectorized transcendental functions of NumPy for CPU with SVE

Methods

- 1. SIMD by SLEEF
- 2. Inlining
- 3. Loop-unrolling

Results (speed-up)

- Finally
 - log10: 5.1 times speed-up (fcc, -O3)

Supplement

 NumPy with scheme 1 "SIMD by SLEEF (ASIMD version)" is already available.

- Repository: <u>https://github.com/yamadafuyuka/numpy/</u>
- Branch: add_SLEEF
- Support functions: log2, log10, exp2.
- SLEEF installation is needed for use.
- We haven't released the SVE version yet.

Thank you

yamada.fuyuka@fujitsu.com

© 2023 Fujitsu Limited