
1 / 15 © 2024 Fujitsu Limited© 2024 Fujitsu Limited

Introducing software
pipelining for the A64FX
processor into LLVM

Masaki Arai†, Naoto Fukumoto†, Hitohi Murai‡

†Fujitsu Limited

‡RIKEN R-CCS

International Workshop on Arm-based HPC:
Practice and Experience (IWAHPCE-2024)

2 / 15 © 2024 Fujitsu Limited

Outline

●Background

●Current Status and Issues of LLVM

●Software Pipelining Implementation for the A64FX

●Performance Evaluation

●Future Work

●Conclusions

3 / 15 © 2024 Fujitsu Limited

Background

●Software pipelining is an essential optimization for
accelerating High-Performance Computing applications
on CPUs

●Although open source compilers such as GCC and LLVM
have implemented software pipelining, it is
underutilized for the AArch64 architecture

●We have implemented software pipelining for the
A64FX processor on LLVM to improve this situation

4 / 15 © 2024 Fujitsu Limited

Background (A64FX)

●The A64FX is an out-of-order superscalar processor
designed for HPC, compliant with the ARMv8-A
architecture profile

●The A64FX supports the Scalable Vector Extension(SVE)
instructions, a vector extension of the ARM instruction
set architecture

●The A64FX supports 128, 256, and 512-bit SVE vector
lengths

●The Fugaku supercomputer uses the A64FX

5 / 15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM

●LLVM 17 has a MachinePipeliner pass as an
optimization pass to perform software pipelining

●The architectures using the MachinePipeliner pass are
ARM, Hexagon, and PowerPC, and AArch64 is not
supported

●The following issues exist regarding the optimization of
HPC applications
● Swing Modulo Scheduling(SMS) algorithm

● Phase Ordering Problem

●No Modulo Variable Expansion(MVE)

6 / 15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM

●The algorithm used by MachinePipeliner is the Swing
Modulo Scheduling(SMS) algorithm, characterized by
short-time optimization and register-constraint-aware
kernel generation

●Previous research[*] has shown that the Iterated
Modulo Scheduling(IMS) algorithm produces better
results than SMS for complex architectures

[*] Codina et al., A Comparative Study of modulo
Scheduling Techniques.(ICS ’02)

7 / 15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM

●MachinePipeliner generates optimization results in SSA
form

●PHI instructions in SSA form are converted to COPY
instructions

●These COPYs may remain after register allocation

●Register allocator may introduce spill codes

MachinePipeliner
Cnverter

SSA ⇒ Non-SSA

Register

Allocator

⇒ These COPYs and spill codes ruin optimization
results！

8 / 15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM

●Modulo Variable Expansion(MVE)
● Sofware pipelining generates Modulo Reservation Table

●Wrong result kernel without MVE

op1 (def R)

op2

op3 (use R)

op1 (def R)

op2

op3 (use R)

op1 (def R)

op2

op3 (use R)

op1 (def R)

op2

op3 (use R)

⇒ One register R cannot hold the required value

9 / 15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM

●Modulo Variable Expansion(MVE)
● Correct result kernel using MVE(2 unroll)

op1 (def R)

op2

op3 (use R)

op1 (def R)

op2

op3 (use R)

op1 (def R)

op2

op3 (use R)

op1 (def R)

op2

op3 (use R)

⇒ This kernel does not destroy register values
in different iterations

10 / 15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM

●MachinePipeliner does not perform Modulo Variable
Expansion(MVE)

●That means additional PHI instructions are required to
preserve the meaning of the program

●And that means adding more COPYs

11 / 15 © 2024 Fujitsu Limited

Software pipelining implementation for the A64FX

●The brief summary:
●We adopt Iterated Modulo Scheduling as a scheduling algorithm

● Our implementation extends the LLVM scheduling model for the
A64FX

●We perform instruction scheduling in non-SSA form

● Our implementation applies Modulo Variable Expansion if
necessary

●We perform register allocation to the kernel part

●We have introduced countermeasures for register shortages due
to register allocation

12 / 15 © 2024 Fujitsu Limited

Software pipelining implementation for the A64FX

●Previous research[*] has shown that the Iterated
Modulo Scheduling(IMS) algorithm produces better
results than SMS for complex architectures

●The A64FX is a more complex CPU than the complex
architectural model used in [*]

[*] Codina et al., A Comparative Study of modulo
Scheduling Techniques.(ICS ’02)

⇒ We adopt Iterated Modulo Scheduling as
a scheduling algorithm

13 / 15 © 2024 Fujitsu Limited

Software pipelining implementation for the A64FX

● The A64FX decomposes
LD2W instruction into
𝜇OP instructions for one
address calculation
(𝜇OP0) and two data
loads (𝜇OP1 and 𝜇OP2)

● It submits the operation
to either the EAGA or
EAGB pipeline

LD2W instruction execution

https://github.com/fujitsu/A64FX

14 / 15 © 2024 Fujitsu Limited

Software pipelining implementation for the A64FX

●There are two possible instruction latency patterns for
LD2W

15 / 15 © 2024 Fujitsu Limited

Software pipelining implementation for the A64FX

●There are eight
execution patterns for
LD2W

●Since our
implementation does
not use pipeline
execution patterns that
cause delays as a
scheduling model

16 / 15 © 2024 Fujitsu Limited

Software pipelining implementation for the A64FX

● In our implementation, the
kernel part is in non-SSA form

●Register allocation is performed
in the kernel part

●Parts other than the kernel
maintain the SSA form and
leave processing to the
subsequent LLVM pass

⇒ Our optimization pass can directly
solve the COPY and spill code problems

17 / 15 © 2024 Fujitsu Limited

Software pipelining implementation for the A64FX

●Our implementation suppresses the instruction level
parallelism and reschedules the kernel if there is a
shortage of registers due to register allocation to the
kernel part

● If that doesn't work, introduce spill code and
reschedule the kernel

⇒ This method guarantees that unscheduled
spill code will not occur

18 / 15 © 2024 Fujitsu Limited

Performance Evaluation

●We used the Livermorec benchmark and the TSVC
benchmark

●We rewrite loops that can be executed in parallel into
SIMD executable code using the ACLE descriptions

●Loop unrolling was not applied to avoid register
shortage situations

●Accurate data dependence distance information is
provided at compile time via command line options if
necessary

19 / 15 © 2024 Fujitsu Limited

Performance Evaluation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

speedup

●Kernel 7 has slightly lower performance

●There are kernels that have a large performance
improvement rate even on a single core

Evaluation Environment

System PRIMEHPC FX700

CPU A64FX, 2.0 GHz, 48 cores

Memory 32GiB(HBM2)

OS CentOS 8.3

Compiler LLVM 17.0.4

Compile
option

-O2 -fno-unroll-loops
-msve-vector-bits=512

20 / 15 © 2024 Fujitsu Limited

Performance Evaluation

●Unroll : the number of times
MVE unrolled the loop body

benchmark unroll

kernel 1 8

kernel 2 6

kernel 3 1

kernel 5 3

kernel 7 6

kernel 11 3

kernel 112 8

TSVC s1161 5

TSVC s271 7

TSVC s272 7

TSVC s273 8

TSVC s274 7

TSVC s1279 7

TSVC s2712 7

TSVC s4113 4

⇒ It is necessary to use MVE
to generate high-performance
kernels

21 / 15 © 2024 Fujitsu Limited

Performance Evaluation

● II : the value of the initiation
interval resulting from
software pipelining

● II∞：the initiation interval
value, assuming an infinite
number of registers exist

benchmark II∞ II

kernel 1 4 6

kernel 2 4 7

kernel 3 109 109

kernel 5 20 20

kernel 7 6 12

kernel 11 10 10

kernel 112 2 3

TSVC s1161 6 11

TSVC s271 3 7

TSVC s272 5 7

TSVC s273 7 8

TSVC s274 6 10

TSVC s1279 4 10

TSVC s2712 3 7

TSVC s4113 23 23

⇒ This table indicates that the
lack of registers suppresses
instruction-level parallelism in
most benchmarks

22 / 15 © 2024 Fujitsu Limited

Future Work

●Adjusting the loop size by loop distribution/fusion and
loop unrolling is necessary for register shortage
problem

● Introducing hierarchical reduction and reverse-if-
conversion for loops of scalar instructions with
conditional statements

●Suppressing application of software pipelining to loops
with a small number of executions

23 / 15 © 2024 Fujitsu Limited

Conclusions

●Software pipelining is an essential optimization for
accelerating HPC applications on CPUs

●We implement software pipelining for the A64FX
processor on LLVM and evaluate its performance

●We confirmed that our implementation improves the
performance of several benchmark programs

●We are also considering proposing our implementation
to LLVM upstream

Thank you

© 2023 Fujitsu Limited

	スライド 1: Introducing software pipelining for the A64FX processor into LLVM
	スライド 2: Outline
	スライド 3: Background
	スライド 4: Background (A64FX)
	スライド 5: Current Status and Issues of LLVM
	スライド 6: Current Status and Issues of LLVM
	スライド 7: Current Status and Issues of LLVM
	スライド 8: Current Status and Issues of LLVM
	スライド 9: Current Status and Issues of LLVM
	スライド 10: Current Status and Issues of LLVM
	スライド 11: Software pipelining implementation for the A64FX
	スライド 12: Software pipelining implementation for the A64FX
	スライド 13: Software pipelining implementation for the A64FX
	スライド 14: Software pipelining implementation for the A64FX
	スライド 15: Software pipelining implementation for the A64FX
	スライド 16: Software pipelining implementation for the A64FX
	スライド 17: Software pipelining implementation for the A64FX
	スライド 18: Performance Evaluation
	スライド 19: Performance Evaluation
	スライド 20: Performance Evaluation
	スライド 21: Performance Evaluation
	スライド 22: Future Work
	スライド 23: Conclusions
	スライド 24

