Qo
International Workshop on Arm-based HPC: FUJITSU
Practice and Experience (IWAHPCE-2024)

Introducing software
pipelining for the A64F
processor into LLVM

Masaki Arai T, Naoto Fukumoto T, Hitohi Murai

T Fujitsu Limited
+ RIKEN R-CCS

Outline FUjiTSU

e Background
e Current Status and Issues of LLVM

e Software Pipelining Implementation for the A64FX
e Performance Evaluation

e Future Work

e Conclusions

2/15 © 2024 Fujitsu Limited

Background FUjiTSU

e Software pipelining is an essential optimization for
accelerating High-Performance Computing applications
on CPUs

e Although open source compilers such as GCC and LLVM
have implemented software pipelining, it is
underutilized for the AArch64 architecture

e We have implemented software pipelining for the
A64FX processor on LLVM to improve this situation

3/15 © 2024 Fujitsu Limited

Background (A64FX) FUjiTSU

® The A64FX is an out-of-order superscalar processor
designed for HPC, compliant with the ARMvS8-A
architecture profile

® The A64FX supports the Scalable Vector Extension(SVE)
instructions, a vector extension of the ARM instruction
set architecture

e The A64FX supports 128, 256, and 512-bit SVE vector
lengths

® The Fugaku supercomputer uses the A64FX

4 /15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM FUjiTSU

e LLVM 17 has a MachinePipeliner pass as an
optimization pass to perform software pipelining

® The architectures using the MachinePipeliner pass are
ARM, Hexagon, and PowerPC, and AArch64 is not
supported

e The following issues exist regarding the optimization of
HPC applications

e Swing Modulo Scheduling(SMS) algorithm
® Phase Ordering Problem
® No Modulo Variable Expansion(MVE)

5/15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM FUjiTSU

e The algorithm used by MachinePipeliner is the Swing
Modulo Scheduling(SMS) algorithm, characterized by
short-time optimization and register-constraint-aware
kernel generation

® Previous research[*] has shown that the Iterated
Modulo Scheduling(IMS) algorithm produces better
results than SMS for complex architectures

[*] Codina et al., A Comparative Study of modulo
Scheduling Techniques.(ICS ‘02)

6/ 15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM FUjiTSU

. Cnverter > Register
SSA = Non-SSA Allocator

— MachinePipeliner

e MachinePipeliner generates optimization results in SSA
form

e PHI instructions in SSA form are converted to COPY
instructions

e These COPYs may remain after register allocation
e Register allocator may introduce spill codes

= These COPYs and spill codes ruin optimization
results !

7/ 15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM FUjiTSU

e Modulo Variable Expansion(MVE)
e Sofware pipelining generates Modulo Reservation Table

opl (def R)
op2
op3 (use R)

e Wrong result kernel without MVE

opl (def R)

op2 o (def R)

op3 (use R)"5§§’ opl (def R)
op3 (use R) |op2

op3 (use R)

= One register R cannot hold the required value

8/15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM FUjiTSU

e Modulo Variable Expansion(MVE)
e Correct result kernel using MVE(2 unroll)

opl (def R)
OPZ OPI (def R)
op3 (use R) |op2 opl (def R)

op3 (use R) |op2 opl (def R)
op3 (use R) |op2
op3 (use R)

= This kernel does not destroy register values
in different iterations

9/15 © 2024 Fujitsu Limited

Current Status and Issues of LLVM FUjiTSU

e MachinePipeliner does not perform Modulo Variable
Expansion(MVE)

e That means additional PHI instructions are required to
preserve the meaning of the program

e And that means adding more COPYs

10/ 15 © 2024 Fujitsu Limited

©
Software pipelining implementation for the A64FX FUJITSU

® The brief summary:
e We adopt Iterated Modulo Scheduling as a scheduling algorithm

e Our implementation extends the LLVM scheduling model for the
A64FX

® We perform instruction scheduling in non-SSA form

e Our implementation applies Modulo Variable Expansion if
necessary

e We perform register allocation to the kernel part

e We have introduced countermeasures for register shortages due
to register allocation

11/15 © 2024 Fujitsu Limited

©
Software pipelining implementation for the A64FX FUJITSU

® Previous research[*] has shown that the Iterated
Modulo Scheduling(IMS) algorithm produces better
results than SMS for complex architectures

e The A64FX is a more complex CPU than the complex
architectural model used in [*]

= We adopt Iterated Modulo Scheduling as
a scheduling algorithm

[*] Codina et al., A Comparative Study of modulo
Scheduling Techniques.(ICS ‘02)

12 /15 © 2024 Fujitsu Limited

©
Software pipelining implementation for the A64FX FUJITSU

LD2W instruction execution e - |

64KiB, 4-way predicter
1 32 Bytes Instruction fetch
stage

® The A64FX decomposes i v o *
LD2W instruction into .
pOP instructions for one . T —
address calculation 20 enies oenries | [|_ioenries || 10enes || | 19 nte
(uOP0) and two data —
loads (uOP1 and pOP2) i/ i/ \i/ w (S @

Decode stage

4 op-flow
| |
K -

= =] Execution stage
. It Su bmlts the operatlon Load / Store Unit I
. Store data Sp FP
to e it h e r t h e EAGA 0 r 24 entries (| 40 entries Lo store
= - l 2 loads xor 1 stare stage
EAGB pipeline ~al G TP
48 zzsrlcs 128Fc[:1Pt{rics 96 c:tl:ics 641 Il(giifici\fay IQSLcnl:rics

T T T | | Max_ 6 insts. commit .
Commit stage
4

13/ 15 © 2024 Fujitsu Limited

https://github.com/fujitsu/A64FX

©
Software pipelining implementation for the A64FX FUJITSU

® There are two possible instruction latency patterns for
LD2W

| fol v [2]3[4l 5] 6 |7 [8]9o] 10|11 J12] 13
uOP0 | EAGA || X | U | UT ~
pOP1 | EAGA XA T B | XT [XM | XB | R [RT | RT2 | RT3/C

nOP2 | EAGB X/A| T B|XT|XM | XB | R|RT|RT2 | RT3/C

W2
W2

M W
M A\

Figure 2: Pipeline execution pattern 4 of LD2W (scalar plus scalar) instruction

| \|0|1|2|3|4\5|6|7\8|9|10|11\(12 13 | 14
4WOP0 | EAGB [X | U | UT)

uOP1 | EAGA XAl T M| B |XT|XM| XB | R |RT|RT2|RT3/C W w2
uOP2 | EAGA XAl T|M| B | XT|XM|XB| R | RT RT2 | RT3/C | W | W2

Figure 3: Pipeline execution pattern 1 of LD2W (scalar plus scalar) instruction

14 /15 © 2024 Fujitsu Limited

P
FUJITSU

Software pipelining implementation for the A64FX

Table 1: Pipeline execution patterns of LD2W (scalar plus
scalar) instruction

® There are eight
execution patterns for

pattern 1OPO 1OP1 pOP2 | latency

LD2W 0 EAGA | EAGA | EAGA | 12
® Since our 1 EAGB | EAGA | EAGA 12
) . 2 EAGA | EAGB | EAGA 11
|mplemen_tat|_on does 1 FACE TTAGE TEAGA | 1
not use pipeline 4 EAGA | EAGA | EAGB | 11
execution patterns that 5 || EAGB | EAGA | EAGB | 11
6 EAGA | EAGB | EAGB 12

cause delays as a 7 EAGB | EAGB | EAGB 12

scheduling model

15/ 15

© 2024 Fujitsu Limited

©
Software pipelining implementation for the A64FX FUJITSU

e In our implementation, the
kernel part is in nhon-SSA form

® Register allocation is performed
in the kernel part 91 — i]

e Parts other than the kernel pres
maintain the SSA formand = ™ e »
leave processing to the i
subsequent LLVM pass

EEEEEE

<l
= Our optimization pass can directly]
solve the COPY and spill code problems

16/ 15 é D 2024 Fujitsu Limited

©
Software pipelining implementation for the A64FX FUJITSU

e Our implementation suppresses the instruction level
parallelism and reschedules the kernel if there is a
shortage of registers due to register allocation to the
kernel part

e If that doesn't work, introduce spill code and
reschedule the kernel

= This method guarantees that unscheduled
spill code will not occur

17/ 15 © 2024 Fujitsu Limited

Performance Evaluation FUjiTSU

® We used the Livermorec benchmark and the TSVC
benchmark

e We rewrite loops that can be executed in parallel into
SIMD executable code using the ACLE descriptions

e Loop unrolling was not applied to avoid register
shortage situations

e Accurate data dependence distance information is
provided at compile time via command line options if
necessary

18/ 15 © 2024 Fujitsu Limited

Performance Evaluation

P
FUJITSU

Evaluation Environment speedup

System PRIMEHPC FX700 -

CPU AG4FX, 2.0 GHz, 48 cores >

Memory 32GiB(HBM2) -

0s CentOS 8.3 e I I I

Compiler LLVM 17.0.4 o I I I I I I I I I I I
i - - - - N x S D

e Kernel 7 has slightly lower performance

® There are kernels that have a large performance
Improvement rate even on a single core

19/15

© 2024 Fujitsu Limited

- P
Performance Evaluation FUJITSU

i | benchmark | unroll |
e Unroll : the number of times kernel 1

MVE unrolled the loop body kernel 2

kernel 3

kernel 5
kernel 7

kernel 11

= It Is necessary to use MVE kernel 112
to generate high-performance ="

TSVC s271
kernels TSVC 5272
TSVC s273
TSVC s274

TSVC 51279

TSVC s2712

20/15 TSVC s4113

A N N N 0O NN U1 O WO W O

© 2024 Fujitsu Limited

Performance Evaluation FUjiTSU

e II : the value of the initiation ernel 1
interval resulting from kernel 2 4 7
software pipelining cernet 3 R
e el a] . kernel 5 20 20
® IIoo : the initiation interval — P
value, assuming an infinite kernel 11 10 10

3
11
TSVC s271 7

= This table indicates that the ___ " ;

number of registers exist kernel 112 2
:

lack of registers suppresses TSVC 5273 i g
:
3

TSVCsli6l

Instruction-level parallelism in ™ve=7 10

TSVC s1279 10
TSVC s2712 7
21/ 15 TSVC s4113 23 23 © 2024 Fujitsu Limited

most benchmarks

Future Work FUjiTSU

e Adjusting the loop size by loop distribution/fusion and
loop unrolling is necessary for register shortage
problem

e Introducing hierarchical reduction and reverse-if-
conversion for loops of scalar instructions with
conditional statements

® Suppressing application of software pipelining to loops
with a small humber of executions

22/ 15 © 2024 Fujitsu Limited

- P
Conclusions FUJITSU

e Software pipelining is an essential optimization for
accelerating HPC applications on CPUs

e We implement software pipelining for the A64FX
processor on LLVM and evaluate its performance

e We confirmed that our implementation improves the
performance of several benchmark programs

e We are also considering proposing our implementation
to LLVM upstream

23/ 15 © 2024 Fujitsu Limited

Thank you

	スライド 1: Introducing software pipelining for the A64FX processor into LLVM
	スライド 2: Outline
	スライド 3: Background
	スライド 4: Background (A64FX)
	スライド 5: Current Status and Issues of LLVM
	スライド 6: Current Status and Issues of LLVM
	スライド 7: Current Status and Issues of LLVM
	スライド 8: Current Status and Issues of LLVM
	スライド 9: Current Status and Issues of LLVM
	スライド 10: Current Status and Issues of LLVM
	スライド 11: Software pipelining implementation for the A64FX
	スライド 12: Software pipelining implementation for the A64FX
	スライド 13: Software pipelining implementation for the A64FX
	スライド 14: Software pipelining implementation for the A64FX
	スライド 15: Software pipelining implementation for the A64FX
	スライド 16: Software pipelining implementation for the A64FX
	スライド 17: Software pipelining implementation for the A64FX
	スライド 18: Performance Evaluation
	スライド 19: Performance Evaluation
	スライド 20: Performance Evaluation
	スライド 21: Performance Evaluation
	スライド 22: Future Work
	スライド 23: Conclusions
	スライド 24

