
Impact of Write-Allocate Elimination on
Fujitsu A64FX

Yan Kang
The Pennsylvania State University
Pennsylvania, USA

Mahmut Kandemir
The Pennsylvania State University
Pennsylvania, USA

Sayan Ghosh
Pacific Northwest National Laboratory
Washington, USA

Andrés Marquez
Pacific Northwest National Laboratory
Washington, USA

Motivation

non-temporal write/stores:

 Directly write new data into memory instead of read a cache line then
modify it

If the data is not going to be reused soon, what is the point to cache it?

Performance improvements ???

Code modifications ???

Reg.

Cache

Memory

ps/ns

1-10 ns

10-100 ns

Write-Allocate：Allo

cate a cache line on a

write miss

a[-------------]

a[...] = b[…]
MemoryCache

t=0

a[-------------]t=1

Write miss

a[-------------]t=2

Allocate line

Copy

Memory operations read a
whole cache line before

making changes

Compiler automatic ???

Evasion: [Hardware detects if cache line is going to be overwritten] store cache line directly in
memory (Intel, non-temporal stores, compiler hints or automatic SpecI2M)

Elimination: [Hardware detects if cache line is going to be overwritten] directly write an L2 cache
line with zeroes, processor loads cache line avoiding memory read

Fujitsu A64FX: Elimination is available through a special 64-bit instruction (DC ZVA) in the ARMv8-A

Write-Allocate Avoidance

https://blogs.fau.de/hager/archives/8997
https://onlinelibrary.wiley.com/doi/10.1002/cpe.6512

Read Dr. Georg Hager’s blog post and paper:

Can write-allocate elimination via “zero fill” improve the performance of
various applications on Fujitsu A64FX?

Zero Filling in Fujitsu A64FX

“zero fill” on L2 Cache:
Upon receiving the DC ZVA request, the L2
cache secures the cache line
corresponding to the specified virtual
address and writes zero data

“zero fill” on L1 Cache:
zero data is written after data in the L1
cache is written back to the L2 cache.

Memory access

This is the memory access we are
trying to eliminate!

Zero Filling in Fujitsu A64FX

“zero fill” on L2 Cache:
Upon receiving the DC ZVA request, the L2
cache secures the cache line
corresponding to the specified virtual
address and writes zero data

“zero fill” on L1 Cache:
zero data is written after data in the L1
cache is written back to the L2 cache.

Memory access

This is the memory access we are
trying to eliminate!

Saving memory traffic means improving
memory b/w, what’s that benchmark to

study “sustainable memory b/w”?��

❑ STREAM is “best case” memory b/w benchmark
❑ Does not represent irregular cases, most applications

❑ Graphs – irregular memory accesses

❑ Applications perform repetitive neighborhood accesses

❑ NEVE is a benchmark, like STREAM for graphs (has
COPY, SUM and MAX) - |V|*|E|*#ops / t

Sayan Ghosh, Nathan R. Tallent, and Mahantesh Halappanavar. "Characterizing performance of graph neighborhood
communication patterns." IEEE Transactions on Parallel and Distributed Systems 33.4 (2021): 915-928.

Can return MB/s!

Benchmarking decisions

--
STREAM Graph Neighborhood Access Kernels

--
name kernel name kernel
--
COPY: a(i) = b(i) Neighbor Copy:
SCALE: a(i) = q*b(i) Neighbor Add:
SUM: a(i) = b(i) + c(i) Neighbor Max:
TRIAD: a(i) = b(i) + q*c(i)
--- vertex edge

Explicit “Zero Fill” formulation for graph neighborhood accesses

Explicit assembly to
invoke DC ZVA

Block outermost loop
over vertices

Invoke zero fill in strides larger
than L2 prefetch distance

Inner loop, where the zfill virtual
address will be invoked several
times (trip count unknown)

Each thread works on fixed
chunk of iterations over |V|
(work is variable)

Explicit “Zero Fill” formulation for graph neighborhood accesses

Explicit assembly to
invoke DC ZVA

Block outermost loop
over vertices

Invoke zero fill in strides larger
than L2 prefetch distance

Inner loop, where the zfill virtual
address will be invoked several
times (trip count unknown)

Each thread works on fixed
chunk of iterations over |V|
(work is variable)

"Zero filling" may not yield performance benefits for irregular graph workloads unless
the number of vertices in a graph is significantly larger than the cache line size and the
standard deviation of the vertex degrees is relatively low.

Benchmarks and applications for evaluations

Expecting STREAM to be
the best case!

Benchmark Scenarios Tested Kernels

STREAM

Copy

Scale

Add

Triad

Graph
Neighborhood
Kernels(NEVE)

Add

Copy

Max

Application scenarios Targeted kernels

Graph500 Breadth First Search
Next frontier list update is similar to graph
neighborhood Copy

Louvain graph clustering
Modularity computation requires summing data,
similar to graph neighborhood Add.

GAP benchmark suite

Breadth First Search (BFS)
Next frontier list update is similar to graph
neighborhood Copy.

PageRank (PR and PR(SPMV)) Score update is similar to STREAM Copy.

Connected Components (CC and CC(SV))
Singleton partition assignment is similar to STREAM
Copy.

Betweenness Centrality (BC)
Aggregation of betweenness scores similar to graph
neighborhood Add.

Rodinia benchmark suite

HotSpot & HotSpot3D
Grid cell update of tiled 2D/3D transient iterative
solver similar to STREAM Copy.

LavaMD
Particle updates in the home box similar to STREAM
Add.

SRAD(V2) Image data update is similar to STREAM Add.

Needleman-Wunsch (NW)
Global copy from local reference is similar to
STREAM Copy.

STREAM benchmark evaluations (GCC, ARM and FCC)

All compilers
demonstrate

improvements,
FCC up to 70%!

Fujitsu has a
compiler option

(-Kzfill), referred as
implicit version

[does not work for
C++ compiler]

Fujitsu is showing a huge
performance gap comparing
with GCC/ARM ???

Loop versioning for STREAM

Enabling loop versioning
option allows the compiler to
perform software pipelining
optimizations, bringing the
overall performance close to
ARM/GCC.

Graph benchmark evaluations (GCC, ARM and FCC)

- Used different graphs – implies different structure/work-per-loop
- ZFILL: degradation of up to 6% but also up to 64% improvement (FCC)
- Since the “zero fill” stride length can be greater than the median #edges for certain

graphs, it can have a limited impact and, in some cases, may incur overheads
- No compiler automatic DC ZVA guaranteed

Graph Application Evaluations

- Does not improve performance where there is
limited work in the ZFILL section

- ~15% improvement when there is sufficient work
- No compiler automatic DC ZVA guaranteed

Non-temporal store patterns may not positively impact overall application execution
times if they are not on the critical performance path.

GAP BFS GAP CC

GAP PR GAP BC

Observations
• NEVE exhibit about 2–5x performance degradation compared to STREAM

• End-to-end improvements between 5-20% for benchmarks and diverse
application scenarios due to "zero fill" adaptations

• Performance improvements of up to 32% in Louvain clustering and median
improvements of 5–17% in GAP PR, CC, and BC benchmarks
%

-im
pr

ov
em

en
t

~20/40%
~20%

Limitations of Zero Filling

● Number of vertices in a graph may not larger than the cache line size.

● Applications may not be written to exploit non-temporal stores.

● Non-temporal store may not be on the critical performance path.

● Regular prefetching may benefit more for short buffer streaming write.

Summary & Future Steps

Demonstrated the impact of write allocate elimination on A64fx for various
applications and show cased the improvement brought by “Zero fill”

Identified possible causes might lead to our observations on the varied
performance improvements, such as software pipelining optimization, SIMD
extensions, etc.

��What exactly reasons behind each or all applications variations on A64FX ???

Where to apply?
In what condition it requires minimal modifications ?

Compiler automatic DC ZVA generation?

In what condition it maximize improvement?

Acknowledgements

• PNNL LDRD Data Model-Convergence (PI: Sayan Ghosh, PNNL)

• DOE ASCR Advanced Memory to Support Artificial Intelligence for
Science (AIAMS, PI: Andrés Márquez, PNNL)

• Penn State HPCL (Prof. Mahmut Kandemir)

• Ookami testbed support (Dr. Eva Siegmann and team, SBU)

• IWAHPCE’24 paper reviewers

