
Fugaku-LLM: A Large Language Model
Trained on the Supercomputer Fugaku

February 19, 2025

Koichi Shirahata

Fujitsu Limited

© 2025 Fujitsu Limited1

Self-introduction

Koichi SHIRAHATA

Senior Project Director

Artificial Intelligence Laboratory, Fujitsu Research, Fujitsu Limited

⚫ March 2015: Received Ph.D. at School of Information Science and
Engineering, Tokyo Institute of Technology

⚫ April 2015: Joined FUJITSU LABORATORIES LTD.

⚫ November 2020, 2021: Achieved the world's highest performance
in MLPerf HPC, a machine learning performance benchmark,
using the Fugaku supercomputer and ABCI

⚫ May 2024: Development of a distributed parallel training method
for large-scale language models in the policy response framework
of the supercomputer "Fugaku"

© 2025 Fujitsu Limited2

2019/06/22 Microsoft Invests $1 billion in 110 billion OpenAI

2020/01/23 OpenAI Releases Scaling Law Paper on Language Generation Models

2021/01/05 OpenAI Announces Image + Language Model CLIP and Image Generation Model DALL-E

2022/05/23 Google Launches Imagen Image Generation Model

2022/07/22 BigScience (HuggingFace, CNRS, GENCI) Launches Multilingual Bloom

2022/08/04 Tsinghua University Announces GLM-130B

2022/08/22 Stability AI Launches Stable Diffusion Image Generation Model

2022/11/30 OpenAI Announces ChatGPT

2023/02/02 exceeded 100 million users in about 2 months after its release.

2023/02/03 Liberal Democratic Party Project Team on AI Evolution and Implementation (1st meeting)

2023/03/14 GPT-4 Now Available in ChatGPT Plus

2023/03/16 Microsoft 365 Copilot brings AI Assistant to Word, Outlook, Teams and more

2023/05/24 Initiation of the Government‐Initiated Project of Supercomputer Fugaku

2023/07/18 Meta Releases LLaMA2

2023/10/03 National Institute of Informatics (NII) and ELYZA adopted the AIST generative AI development support program

2023/12/19 Tokyo Tech AIST releases Swallow-7B, 13B, 70B

2024/02/15 Google Announces Gemini Pro 1.5

2024/03/04 Anthropic Announces Claude3

2024/04/18 Meta Releases LLaMA3

2024/05/10 Fugaku-LLM Published

History of generative AI over the past few years

3

Predictable cost-effectiveness (scaling law)

Source: Scaling Laws for Neural Language Models

・Amount of calculation ∝ number of parameters x amount of data
・Amount ∝ number of GPUs x computation time
・If we improve the quality of the data and the model, it will be cheaper.
・At least this lower cost effectiveness is guaranteed without any effort

4

Improvement of accuracy as
computation increases

Improvement of accuracy as
parameters increases

Improvement of accuracy as
data size increases

© 2025 Fujitsu Limited

https://arxiv.org/abs/2001.08361

Compute resource requirements (scaling law)

⚫ Emergence is observed when the underlying model is trained with a
computational complexity of 1023 FLOPs*.
⚫ Suddenly learn to do something that one had never been able to do before
⚫ If we increase the amount of data and computation, they will naturally acquire various

capabilities in the future.
⚫ Emergence is observed not only in GPT but also in other models on a similar scale.

© 2025 Fujitsu Limited

Wei et al., Emergent Abilities of Large Language Models, 2022Total number of operations（FLOPs*）

精
度

Significantly
improved accuracy
at 1023 FLOPs*

* Here, FLOPs refers to the total number of operations (not speed) of pre-training.
FUJITSU-PUBLIC 5

Why do we train GPT in Fugaku?

○ GPUs are said to be suitable for deep learning, but the emergent figure of 10 23 FLOPs cannot be
achieved even if the V-Large class of ABCI‘s grand challenge system (as of 2023), one of the
largest GPU supercomputers in Japan, is used.

○ 60 x 10 12 FLOP/s/GPU x 4,352 GPU x 24 hours x 3,600 s = 2.2 x 10 22 FLOPs

○ If the effective performance of half of the theoretical peak performance of Fugaku‘s FP32 can be
achieved, pre-training on a scale where emergency is observed (1023 Flop/s) using 10 million
node time can be realized immediately.

○ 3.38 x 1012 FLOP/s/node x 10 million node hours x 3,600 s = 1.22 x 10 23 FLOPs

© 2025 Fujitsu LimitedFUJITSU-PUBLIC

AIST ABCI (as of 2023)

GPU systems: 4,352 GPUs
Theoretical performance 226 PFlop/s (single precision)

CPU system (A64FX): 158,976 CPUs
Theoretical performance 1.07 ExaFlop/s (single precision)

6

The supercomputer Fugaku

10 million node hours
=10K nodes x 41.6days

INTERNAL USE ONLYINTERNAL USE ONLY

Fugaku supercomputer

#1 in the world
- HPCG
- Graph500

- TOP500 (’20.06-’21.11)

- HPL-AI (’20.06-’21.11)

7

High Performance
& High Efficiency
- A64FX (ARM)
- 5 PB memory
- 158,976 nodes
- 442 Petaflops *

(Benchmark Performance)

- 30M W

© 2025 Fujitsu Limited

photo credit: RIKEN

Ranked #1 in HPCG and Graph500 for 9 consecutive terms

#1 in Machine Learning Processing Benchmark MLPerf HPC in 2021

7

Four consecutive quadruple crown

The supercomputer Fugaku was jointly developed
by RIKEN and Fujitsu.

How do we train GPT on Fugaku?

○ Pre-training the underlying model
requires:
○GPT-3: 3x1023FLOPs

○Until now, training large models such as
large language models was not an
intended application of Fugaku, and no
optimization was made for it.

○Acceleration of GPT for Fugaku
○Original performance: 22 PetaFLOP/s

(10% efficiency)

○Target performance: 110 PetaFLOP/s
(50% efficiency)

○Acceleration strategy
○Performance optimization of a large-scale

deep training framework for Fugaku

© 2025 Fujitsu Limited

-6.71E+07

5.00E+22

1.00E+23

1.50E+23

2.00E+23

2.50E+23

3.00E+23

3.50E+23

4.00E+23

0 20 40 60 80 100 120 140 160

F
L
O

P
s

Pre-training Days

GPT-3 complexity

30 days 155 daysx5 Speedup

Use approximately 1/5 (32,768 nodes) of Fugaku
estimation of the case

FUJITSU-PUBLIC 8

(initial target)

How do we train GPT on Fugaku?

○Challenges in high-performance computing
○Porting deep learning framework Megatron-DeepSpeed to Fugaku

○Faster batch processing of small matrix products

○Faster group communication over TofuD network

○Development of a stable training method even with FP16

○Issues in natural language processing
○Collecting and cleaning language data

○legal review by an attorney
○Confirming copyright, contract, and other restrictions on the release of research results

(source code, model, and data), and establishing a system to legally release research
results

○Examination of methods for post-training

© 2025 Fujitsu Limited9

Roles of each organization

Tokyo Institute of Technology: Overall review, parallelization of large language models and faster
communication (Combine three types of parallelization to optimize communication performance
and speed up collective communication on Tofu Interconnect D)

Tohoku University: Collecting training data, selecting models to train

Fujitsu: Accelerated computation and communication (Accelerated collective communication on
Tofu interconnect D, optimized pipeline parallel performance), pre-training and post-training

RIKEN: Distributed parallelization of large language models and faster communication (faster
collective communication on Tofu Interconnect D)

Nagoya University: Application of Fugaku-LLM to 3D Shape Generation AI

Cyber Agents: Providing data for training

Kotoba Technologies: Porting deep learning framework to Fugaku

10 © 2025 Fujitsu Limited

Performance optimization of Transformer on Fugaku

© 2025 Fujitsu Limited

⚫ Performance analysis and optimization of each layer of the software stack to optimize

Transformer performance on Fugaku

⚫ In particular, to speed up dense matrix products and to optimize communication performance

Math library

Deep Learning Framework (PyTorch)

Parallelization (Megatron-DeepSpeed)

Transformer (GPT-x)

Uses Fujitsu's accelerated framework for Fugaku.
Acceleration for LLM

Combining three types of parallelization for Fugaku
communication performance optimization

Measuring Transformer performance, analyzing
bottlenecks

Accleration for Transformer in dense matrix product
libraries

11

Breakdown of GPT computation time

○ Much of the computation is the product of dense matrix-dense sequences

→ 66% of the time was spent on the A64FX and 49% on the A100

→ The performance was 1/3 of the theoretical peak.

Source: The 2nd Computational Science Forum 2022
https://hpcic-kkf.com/forum/2022/kkf_02/data/yokota_kkf2022-02_v2.pdf

By applying each transformation matrix to
a common input X, we obtain K = XW K ,
Q = XW K , V = XW V . Extract the degree of
attention with the obtained elements.

Credit: Yokota Lab., Institute of Science Tokyo

12 © 2025 Fujitsu Limited

Performance of dense matrix-dense matrix products

A64FX
・Theoretical peak: 6.14~6.76 TFlop/s
・Measured dense matrix product: 0.66~5.86 Tflop/s
 (Efficiency: 10~87%)

・Performance depends on the size of the matrix.
・Fast implementation from the framework is needed
・It is also necessary to check whether it can be called
 multiple times

Credit: RIKEN

13
© 2025 Fujitsu Limited

Deep learning software stack (before)

○AI frameworks work in a variety of
environments
○Popular AI frameworks: TensorFlow, PyTorch

○Architectures: x86_64 CPU, ARM CPU, NVIDIA
GPU, AMD GPU

○Optimized DNN libraries are essential for
fast AI processing
○NVIDIA: cuDNN, Intel: oneDNN, ...

○There was no DNN library for ARM
○ In particular, there was no library to efficiently

execute ARM's SVE (SIMD) instructions.

AI frameworks

???

oneDNN

cuDNN

Xbyak

A64FX

(ARM CPU)

Intel

CPUs
NVIDIA

GPUs

14
© 2025 Fujitsu Limited

Deep learning software stack
(our development)

○ARM extension of oneDNN
○We added features to oneDNN for ARM CPUs

○Highly efficient layer processing using SVE
instruction

○Development of Xbyak_aarch64
○OneDNN uses Xbyak intenally

○ Xbyak is a C++ library for writing assembly code

○ It can dynamically generate machine instructions

● DL code often has different parameters

● It can generate efficient instruction sequences using
parameters known only at runtime

○We developed aarch64 version of Xbyak
○ Dynamic function generation with Xbyak_aarch64

○We also developed translator for automatically
porting OneDNN functions for x86_64 to funtions
for aarch64

AI frameworks

oneDNN

cuDNN

Xbyak_aarch64 Xbyak

A64FX Intel

CPUs
NVIDIA

GPUs

© 2025 Fujitsu Limited

15

For more information, please refer to Fujitsu Research technology blog.
https://blog.fltech.dev/entry/2020/11/18/fugaku-onednn-deep-dive-ja

(Reference) Performance evaluation on ResNet-50

○We accelerated oneDNN for ARM delivers 9.2 times faster

ResNet-50, TensorFlow

Math Library Only

OneDNN for ARM

Training

Inference

Math Library Only

OneDNN for ARM

© 2025 Fujitsu Limited
16

Number of processed images per second

Number of processed images per second

For more information, please refer to Fujitsu Research technology blog.
https://blog.fltech.dev/entry/2020/11/18/fugaku-onednn-deep-dive-ja

Implementation of Batch Matrix Multiplication

○ Large Language Models (LLMs) represent a significant leap

○ LLM training is also carried out on the supercomputer Fugaku.

○ LLM process is dominated by matrix multiplications

○2 types of matrix multiplication

○A large size matrix multiplication

○Batch Matrix Multiplication (BMM): performing multiple matrix multiplications

© 2025 Fujitsu Limited

We propose an efficient BMM implementation for A64FX CPUs.

of batches

…

Implementation of Batch Matrix Multiplication for Large Language Model Training on A64FX CPUs, Hiroki Tokura et al., COOL Chips 27

17

○ PyTorch uses BLAS routines to accelerate matrix multiplications in LLMs

○ A matrix multiplication is assigned per thread
○ The performance is degraded if the number of matrix multiplications is less than the number of cores

PyTorch original implementation

© 2025 Fujitsu Limited

Thread ID

Matrix multiplication0

Matrix multiplication1

Matrix multiplication5

6

47

Time

of batches

Idle threads

The execution time

Batch matrix multiplication patterns appeared
in the LLM training of our evaluation.

Pattern 1 2 3 4 5

Transpose of A No No No Yes Yes

Transpose of B No Yes Yes No No

of matrix
multiplications 6 6 6 6 6

M 144 144 2048 2048 2048

N 2048 2048 144 2048 2048

K 2048 2048 2048 144 144

LDA 2592 864 2048 2592 2592

LDB 2048 2048 2592 2592 864

LDC 144 144 2048 2048 2048

18

Implementation of Batch Matrix Multiplication for Large Language Model Training on A64FX CPUs, Hiroki Tokura et al., COOL Chips 27

of batches

…

○ A64FX CPU has 48 cores
○ 48 Threads are divided into Thread-Groups(TGs) every t threads (t is the number of threads in a TG)

○ A matrix multiplication is computed by g TGs (g is the number of TGs to be computed in parallel)

○ We experimentally determine the optimal values of t and g

Our proposed implementation

© 2025 Fujitsu Limited

CMG0

L2 cache

CMG1

L2 cache

Network on chip

HBM2 HBM2

CMG2

L2 cache

CMG3

L2 cache

HBM2 HBM2

TG 0 TG 1 TG 2 TG 3

Thread ID

0

11

12

23

24

35

36

47

Matrix

Multiplication
Thread-Group

of batches per Thread-Group

Time

The execution time

CMG

Cache

TG TG TG TG

TG TG TG TG

TG TG TG TG

CMG

Cache

TG TG

TG TG

TG TG

CMG

Cache

TG TG TG TG

CMG

Cache

TG

TG

TG

CMG

Cache

TG TG

CMG

Cache

TG

The patterns of Thread-Groups Example of TG assignment for 𝑔 = 2

19

Implementation of Batch Matrix Multiplication for Large Language Model Training on A64FX CPUs, Hiroki Tokura et al., COOL Chips 27

Evaluation result of overall LLM training

© 2025 Fujitsu Limited

Our proposed implementation contributes to a 25% improvement in overall LLM training

Fujitsu Processor A64FX Specifications

CPU: A64FX(48cores, 2.2GHz)
The language environment: tcsds-1.2.38

25% improvement

Cores 48

Frequency[GHz] 2.2

FP32 Peak Flops[TFLOPS] 6.7584

20

Implementation of Batch Matrix Multiplication for Large Language Model Training on A64FX CPUs, Hiroki Tokura et al., COOL Chips 27

○ In order to train GPT efficiently in Fugaku, it is important to properly combine three types of parallelization.

Parallel training method of GPT

21

Data parallel Tensor parallel Pipeline parallel

Data is distributed

Model is redundant

Gradient collective
communication

Challenge: Generalization
performance decreases as
batch size increases

Solution: Regularization
and optimization
techniques

Challenge: Increased
communication frequency

Solution: Apply algorithms
to reduce communication,
such as SUMMA

Challenge: Pipeline bubble

Solution: Apply
bidirectional pipeline

Data is redundant

Model is distributed

Activation collective
communication

Data is redundant

Model is distributed

Activation one-to-one
communication

© 2025 Fujitsu Limited

Data parallel and tensor parallel

© 2025 Fujitsu Limited

Mini Batch ** A Mini Batch ** B

Δw

Δw

Δw

Δw

Δw

F
o
rw

a
rd

B
a
ck

w
a
rd

Process * 0 Process * 1

Δw

Entire mini-batch **

Mini Batch **

F
o
rw

a
rd

B
a
c
k
w

a
rd

Process * 0 Process * 1

d, Δd

d, Δd

d, Δd

Boundary Area Communication

○ Data Parallel: Compute multiple data in parallel

○ Advantage: Less sensitive to communication
time

○ Cons: Too much batch size slows down
training

*Process: Unit of processing assigned to a processor (multiple processes can be assigned to a processor)
** Mini-batch: Number of samples of input data (images, etc.) to be processed at one time

We use data parallelism first

○ Tensor Parallel: Split NN and compute in parallel

○ Pros: No accuracy loss

○ Cons: Susceptible to communication time

weight data
Communications for

22

Data parallel scalability

The 2nd Computational Science Forum 2022
https://hpcic-kkf.com/forum/2022/kkf_02/data/yokota_kkf2022-02_v2.pdf

Credit: RIKEN

DP: Number of nodes in data parallel

23 © 2025 Fujitsu Limited

Data parallel and tensor parallel

© 2025 Fujitsu Limited

Mini Batch ** A Mini Batch ** B

Δw

Δw

Δw

Δw

Δw

F
o
rw

a
rd

B
a
ck

w
a
rd

Process * 0 Process * 1

Communication
of weight data

Δw

Entire mini-batch **

Mini Batch **

F
o
rw

a
rd

B
a
ck

w
a
rd

Process * 0 Process * 1

d, Δd

d, Δd

d, Δd

Boundary communication

○ Data Parallel: Compute multiple data in parallel

○ Advantage: Less sensitive to communication
time

○ Cons: Too much batch size slows down
training

*Process: Unit of processing assigned to a processor (multiple processes can be assigned to a processor)

** Mini-batch: Number of samples of input data (images, etc.) to be processed at one time

We use tensor parallel together with data parallel

○ Tensor Parallel: Split NN and compute in parallel

○ Pros: No training loss

○ Cons: Susceptible to communication time

24

Tensor parallel scalability (execution time breakdown)

© 2025 Fujitsu Limited

The 2nd Computational Science Forum 2022
https://hpcic-kkf.com/forum/2022/kkf_02/data/yokota_kkf2022-02_v2.pdf

Credit:Yokota Lab. Institute of Science Tokyo

(=TP)

TP: Number of nodes in tensor parallel

25

Performance of data parallel and tensor parallel combinations

© 2025 Fujitsu Limited

The 2nd Computational Science Forum 2022
https://hpcic-kkf.com/forum/2022/kkf_02/data/yokota_kkf2022-02_v2.pdf

26

Supplied:
Dear Hiroyuki Kojima, Kotoba
Technologies
Mr. Kazuto Ando, RIKEN

TP

DP: Number of nodes in data parallel
TP: Number of nodes in tensor parallel

Pipeline parallel

© 2025 Fujitsu Limited

Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines, https://arxiv.org/abs/2107.06925

27

Pipeline parallel

○ We apply interleaved 1F1B pipeline parallel implemented in Megatron-LM

© 2025 Fujitsu Limited

https://arxiv.org/pdf/2104.04473.pdf

28

https://arxiv.org/pdf/2104.04473.pdf

○ Increased computational efficiency from 10% at the beginning of development to about 20%

Computational performance of training with 30B parameters

© 2025 Fujitsu Limited

Number of compute nodes 576 46081152 2304 576 46081152 2304

Credit: Yokota Lab., Institute of Science Tokyo

Before Acceleration After Acceleration

Execu
tio

n
 tim

e o
f o

n
e iteratio

n

Number of compute nodes
Execu

tio
n

 tim
e o

f o
n

e iteratio
n

29

DP: Number of nodes for data parallel
TP: Number of nodes for tensor parallel
PP: Number of nodes for pipeline parallel

Percentage of time in training language models

○ About 90% of the time is related to
communications
○ Reducing the percentage of communication time leads

to faster speeds

○ Tensor Parallel and Data Parallel incurs
Allreduce communications

○ Pipeline Parallel:
○ Adjacency communication with Send/Recv

○ Include wait time (bubble)
Percentage of time in GPT-13B training on Fugaku
TP=6, PP=8, DP=64

30 © 2025 Fujitsu Limited

DP: Number of nodes for data parallel
TP: Number of nodes for tensor parallel
PP: Number of nodes for pipeline parallelAccelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,

Nakamura et al., IPSJ-HPC-193

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku

❶ Accelerating AllReduce on Fugaku

• Bidirectional Ring-AllReduce
• 6D Mesh/Torus rankmap
• Accelerate iterated calculations
• Computation time hiding

❷Accelerating training of language
models with the accelerated Allreduce

• PyTorch integration
• Rankmap for 3D parallelism
• Accelerating for large message

size

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura et al., IPSJ-HPC-193

31 © 2025 Fujitsu Limited

Proposed Method: Bidirectional One-Dimensional Ring-
AllReduce

Two-way independent communication between
nodes is suppored on Fugaku

Data Partitioning + Bidirectional Ring-like Path
→ Maximize bandwidth utilization

Example of a Bidirectional Ring-AllReduce Channel

32 © 2025 Fujitsu Limited

Communication
path 1

Communication
path 2

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura et al., IPSJ-HPC-193

Usage Method: Rankmap

○Rankmap: Correspondence between
coordinates and rank

○Ring-AllReduce communicates with adjacency
rank

→ Physically adjacent nodes are adjacent by rank
 We call it "one-stroke route"

33

2 × 3 rankmap example

(a) Coordinates and channels

(b) Rank and channel

Communication
path

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura et al., IPSJ-HPC-193

© 2025 Fujitsu Limited

Benefits of Rankmap

34

• Default Assignment: Order of rank as
traversing each dimension
• Communication that is not 0 hop

occurs
• High latency
• Overlapping communication paths

• Using Rankmap to sort rank and
coordinates
• All 0 hop communication is possible.
• Communication paths do not

overlap

Node of
Rank N

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura et al., IPSJ-HPC-193

Hop 0 comm.

Hop 3 comm.

Hop 4 comm.

Total number of
hops: 10

Node of
Rank N

Hop 0 comm.

Total number of
hops: 0

© 2025 Fujitsu Limited

Proposed Method: Creating a Two-Dimensional rankmap

35

Example of Generating a Two-Dimensional Rank Map

(a) Example of
2 × 2

(b) Example of
2 × ℎ

(c) Example of
2𝑤 × ℎ

• Case 2 × 2
• As shown in Figure (a)

• Case 2 × ℎ
• Stretch in the y-axis direction by

ℎ − 2 from figure (a)

• Case 2𝑤 × ℎ
• Increases the number of

convexities along the x-axis by
𝑤 − 1 from (b)

• Cover except odd x odd

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura et al., IPSJ-HPC-193

© 2025 Fujitsu Limited

Other Speedup Implementation we applied

1. Double buffering
○Hided aggregate calculation time into communication time

2. OpenMP+SIMD
○Accelerated continuous addition and assignment operations

3. Static allocation of buffers
○Statically allocate buffer space for inplace operations

36

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura et al., IPSJ-HPC-193

© 2025 Fujitsu Limited

Existing and proposed methods

37

+Rankmap and other speedups

Comparison of existing and proposed methods

One-side comm w/ uTofu

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura Akumi et al., IPSJ-HPC-193

© 2025 Fujitsu Limited

102 103 104 105 106 107 108 109

Count Size

0

1

2

3

4

5

6

B
an
d
W
id
th
[G
B
y
te
/s
]

MPI Allreduce Default 12 node

MPI Allreduce Ring 12 node

Ring isend/irecv 12 node

uTofu 12 node

102 103 104 105 106 107 108 109

Count Size

0

2

4

6

8

B
an
d
W
id
th
[G
B
y
te
/s
]

MPI Allreduce Default 3 node

MPI Allreduce Ring 3 node

Ring isend/irecv 3 node

uTofu 3 node

Experiment 1: Results (3 nodes, 12 nodes)

Exceed in the large message
length area

38 © 2025 Fujitsu Limited

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura et al., IPSJ-HPC-193

Experiment 2: Speed performance of language models

AllReduce adjacency
communication

AllReduce: Rankmap + our proposed AllReduce
Adjacency communication: Rankmap

Acceleration methods

13B Model Time Breakdown
TP=6, PP=8, DP=64

39 © 2025 Fujitsu Limited

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura et al., IPSJ-HPC-193

DP: Number of nodes for data parallel
TP: Number of nodes for tensor parallel
PP: Number of nodes for pipeline parallel

Experiment 2: Results (13B model)

22 23 24 25 26

Data parallel size

0

1

2

3

4

D
at
a
P
ar
al
le
l
B
an
d
W
id
th
[G
B
y
te
/s
] 13B MPI (rankmap)

13B MPI (no rankmap)

13B uTofu

20 21 22 23 24 25 26

Data parallel size

0 00

0 05

0 10

0 15

0 20

T
F
L
O
P
/s

13B MPI (rankmap)

13B MPI (no rankmap)

13B uTofu

20 21 22 23 24 25 26

Data parallel size

0 0

0 5

1 0

1 5

2 0

2 5

3 0

3 5

T
en
so
r
P
ar
al
le
l
B
an
d
W
id
th
[G
B
y
te
/s
]

13B MPI (rankmap)

13B MPI (no rankmap)

13B uTofu

Increased by
the AllReduce
algorithm

Increased by
Rankmap

40 © 2025 Fujitsu Limited

Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku,
Nakamura et al., IPSJ-HPC-193

・Deep learning framework Megatron-DeepSpeed is ported to Fugaku to speed up matrix library on CPU
->Achieved Six times acceleration (18 seconds instead of 110 seconds)

・Combining three types of parallelization for Fugaku to optimize communication performance and accelerate collective
communication on Tofu Interconnect D
->Achieved three times higher communication speed than before

・GPUs are commonly used to train large language models, and the shortage of GPUs around the world has become a
social problem. The demonstration that a large language model can be trained with Fujitsu's domestic CPU in Fugaku is an
important achievement from the viewpoint of economic security.

Research Results (1): Significantly Improved Computational Performance for
Training in Large-Scale Language Models on the Supercomputer "Fugaku"

41

After acc. (w/o utofu)

After acc. (w utofu)
Before acc. (w utofu)

Three times speedup

© 2025 Fujitsu Limited

・"Fugaku-LLM", a 13 billion parameter model, was trained from scratch using original data.

→ While many domestic models use Japanese data for continual training with open models, "Fugaku-LLM" was trained from scratch
using its own data, enabling the entire training process to be grasped, with superior transparency and safety.

・Fugaku's 13,824 compute nodes were used for training, and approximately 400 billion tokens approximately 60% of the
training data was trained using Japanese content and other combinations of English, math, and code.
(Approx. 2 months of pre-training, Approx. 2 months of post-learning)

→ This results in the highest performance for open models that are Japanese proficient and training on proprietary data in Japan,
with an average score of 5.5 on Japanese MT-Bench.
→ The benchmark performance of 9.18 is particularly high for humanities and social studies tasks, and it is expected to engage in
dialogue rooted in Japanese language and culture.

Research Results (2): A large language model with 13 billion parameters that ensures
transparency and security, is easy to use and has excellent Japanese performance

42

In particular, it shows a high
benchmark performance of 9.18
for humanities and social studies

tasks. Dialogue rooted in
Japanese language and culture

is expected

Completed training about
400 billion tokens with
13 billion parameters.

About 60% of the data is in
Japanese. Japanese MT-Benchmark result as of

May, 2024

© 2025 Fujitsu Limited

Future Developments

・The seven parties has made their work available to researchers and engineers around the world to develop large-scale language
models through GitHub and Hugging Face, which anyone can use for research and commercial purposes under a license.
→ Also, Fujitsu launched Fugaku-LLM on May 10, 2024 through Fujitsu Research Portal, a free trial of Fujitsu's advanced technologies.

・We expect that the participation of many researchers and engineers in the improvement of basic models and new applied research will
lead to the creation of efficient methods, and to the "AI for Science" that utilizes AI basic models in scientific research, such as the
dramatic acceleration of the scientific research cycle through the collaboration of scientific simulation and generated AI, and to the next
generation of innovative research and business results.

43 © 2025 Fujitsu Limited

44

Acknowledgement

⚫ This achievement is based on the Government‐Initiated Projects of Supercomputer Fugaku
“Development of Distributed Training Method for Large Language Models on Fugaku.”
(Project ID: hp230254).

© 2025 Fujitsu Limited

Thank you

© 2025 Fujitsu Limited

	スライド 1: Fugaku-LLM: A Large Language Model Trained on the Supercomputer Fugaku
	スライド 2: Self-introduction
	スライド 3: History of generative AI over the past few years
	スライド 4: Predictable cost-effectiveness (scaling law)
	スライド 5: Compute resource requirements (scaling law)
	スライド 6: Why do we train GPT in Fugaku?
	スライド 7: Fugaku supercomputer
	スライド 8: How do we train GPT on Fugaku?
	スライド 9: How do we train GPT on Fugaku?
	スライド 10: Roles of each organization
	スライド 11: Performance optimization of Transformer on Fugaku
	スライド 12: Breakdown of GPT computation time
	スライド 13: Performance of dense matrix-dense matrix products
	スライド 14: Deep learning software stack (before)
	スライド 15: Deep learning software stack (our development)
	スライド 16: (Reference) Performance evaluation on ResNet-50
	スライド 17: Implementation of Batch Matrix Multiplication
	スライド 18: PyTorch original implementation
	スライド 19: Our proposed implementation
	スライド 20: Evaluation result of overall LLM training
	スライド 21: Parallel training method of GPT
	スライド 22: Data parallel and tensor parallel
	スライド 23: Data parallel scalability
	スライド 24: Data parallel and tensor parallel
	スライド 25: Tensor parallel scalability (execution time breakdown)
	スライド 26: Performance of data parallel and tensor parallel combinations
	スライド 27: Pipeline parallel
	スライド 28: Pipeline parallel
	スライド 29: Computational performance of training with 30B parameters
	スライド 30: Percentage of time in training language models
	スライド 31: Accelerating All-reduce Communication in Large-Scale Machine Learning on Fugaku
	スライド 32: Proposed Method: Bidirectional One-Dimensional Ring-AllReduce
	スライド 33: Usage Method: Rankmap
	スライド 34: Benefits of Rankmap
	スライド 35: Proposed Method: Creating a Two-Dimensional rankmap
	スライド 36: Other Speedup Implementation we applied
	スライド 37: Existing and proposed methods
	スライド 38: Experiment 1: Results (3 nodes, 12 nodes)
	スライド 39: Experiment 2: Speed performance of language models
	スライド 40: Experiment 2: Results (13B model)
	スライド 41: Research Results (1): Significantly Improved Computational Performance for Training in Large-Scale Language Models on the Supercomputer "Fugaku"
	スライド 42: Research Results (2): A large language model with 13 billion parameters that ensures transparency and security, is easy to use and has excellent Japanese performance
	スライド 43: Future Developments
	スライド 44: Acknowledgement
	スライド 45

